Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449973

RESUMO

The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic, and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1ß reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the SDHB promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1ß-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.


Assuntos
Proteômica , Ácido Succínico , Camundongos , Animais , Glucocorticoides/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Inflamação/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(6): E514-E530, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126848

RESUMO

Elevated serum concentrations of glucocorticoids (GCs) result in excessive lipid accumulation in white adipose tissue (WAT) as well as dysfunction of thermogenic brown adipose tissue (BAT), ultimately leading to the development of obesity and metabolic disease. Here, we hypothesized that activation of the sympathetic nervous system either via cold exposure or the use of a selective ß3-adrenergic receptor (ß3-AR) agonist alleviates the adverse metabolic effects of chronic GC exposure in rodents. To this end, male 10-wk-old C57BL/6NRj mice were treated with corticosterone via drinking water or placebo for 4 wk while being maintained at 29°C (thermoneutrality), 22°C (room temperature), or 13°C (cold temperature); in a follow-up study mice received a selective ß3-AR agonist or placebo with and without corticosterone while being maintained at room temperature. Body weight and food intake were monitored throughout the study. Histological and molecular analyses were performed on white and brown adipose depots. Cold exposure not only preserved the thermogenic function of brown adipose tissue but also reversed GC-induced lipid accumulation in white adipose tissue and corrected GC-driven obesity, hyperinsulinemia, and hyperglycemia. The metabolic benefits of cold exposure were associated with enhanced sympathetic activity in adipose tissue, thus potentially linking an increase in sympathetic signaling to the observed metabolic benefits. In line with this concept, chronic administration of a selective ß3-AR agonist reproduced the beneficial metabolic effects of cold adaption during exposure to exogenous GCs. This preclinical study demonstrates the potential of ß3-AR as a therapeutic target in the management and prevention of GC-induced metabolic disease.NEW & NOTEWORTHY This preclinical study in mice shows that the ß3-adrenergic receptor can be a potential therapeutic approach to counteracting glucocorticoid (GC)-induced obesity and metabolic dysfunction. Both cold acclimation and ß3-adrenergic receptor stimulation in a mouse model of excess glucocorticoids were adequate in not only preventing obesity, adiposity, and adipose tissue dysfunction but also correcting hyperinsulinemia, hyperleptinemia, and dyslipidemia.


Assuntos
Glucocorticoides , Receptores Adrenérgicos beta , Masculino , Animais , Camundongos , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores Adrenérgicos beta/metabolismo , Corticosterona/metabolismo , Seguimentos , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Lipídeos , Termogênese
3.
Front Endocrinol (Lausanne) ; 13: 835720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432217

RESUMO

Despite the continued development of specialized immunosuppressive therapies in the form of monoclonal antibodies, glucocorticoids remain a mainstay in the treatment of rheumatological and auto-inflammatory disorders. Therapeutic glucocorticoids are unmatched in the breadth of their immunosuppressive properties and deliver their anti-inflammatory effects at unparalleled speed. However, long-term exposure to therapeutic doses of glucocorticoids decreases bone mass and increases the risk of fractures - particularly in the spine - thus limiting their clinical use. Due to the abundant expression of glucocorticoid receptors across all skeletal cell populations and their respective progenitors, therapeutic glucocorticoids affect skeletal quality through a plethora of cellular targets and molecular mechanisms. However, recent evidence from rodent studies, supported by clinical data, highlights the considerable role of cells of the osteoblast lineage in the pathogenesis of glucocorticoid-induced osteoporosis: it is now appreciated that cells of the osteoblast lineage are key targets of therapeutic glucocorticoids and have an outsized role in mediating their undesirable skeletal effects. As part of this article, we review the molecular mechanisms underpinning the detrimental effects of supraphysiological levels of glucocorticoids on cells of the osteoblast lineage including osteocytes and highlight the clinical implications of recent discoveries in the field.


Assuntos
Osteócitos , Osteoporose , Osso e Ossos/metabolismo , Glucocorticoides/metabolismo , Humanos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
4.
Bone Res ; 9(1): 40, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465731

RESUMO

Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased ß-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.

5.
Horm Metab Res ; 53(1): 9-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33207372

RESUMO

Coronavirus disease 2019 (COVID-19), caused by an infection with the novel coronavirus SARS-CoV-2, has resulted in a global pandemic and poses an emergency to public health systems worldwide. COVID-19 is highly infectious and is characterized by an acute respiratory illness that varies from mild flu-like symptoms to the life-threatening acute respiratory distress syndrome (ARDS). As such, there is an urgent need for the development of new therapeutic strategies, which combat the high mortality in severely ill COVID-19 patients. Glucocorticoids are a frontline treatment for a diverse range of inflammatory diseases. Due to their immunosuppressive functions, the use of glucocorticoids in the treatment of COVID-19 patients was initially regarded with caution. However, recent studies concluded that the initiation of systemic glucocorticoids in patients suffering from severe and critical COVID-19 is associated with lower mortality. Herein we review the anti-inflammatory effects of glucocorticoids and discuss emerging issues in their clinical use in the context of COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Glucocorticoides/uso terapêutico , Imunossupressores/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Humanos , Síndrome do Desconforto Respiratório/virologia
6.
Mol Metab ; 42: 101098, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045434

RESUMO

OBJECTIVE: Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. METHODS: Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. RESULTS: As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. CONCLUSIONS: Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease.


Assuntos
Envelhecimento/metabolismo , Glucocorticoides/metabolismo , Leptina/metabolismo , Tecido Adiposo/metabolismo , Fatores Etários , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Composição Corporal , Peso Corporal/fisiologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Termogênese
8.
Diabetologia ; 62(8): 1463-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31098671

RESUMO

AIMS/HYPOTHESIS: Chronic glucocorticoid therapy causes insulin resistance, dyslipidaemia, abnormal fat accumulation, loss of muscle mass and osteoporosis. Here we describe a hitherto unknown sexual dimorphism in the metabolic response to chronic glucocorticoid exposure in mice. This led us to investigate whether glucocorticoid-induced insulin resistance and obesity were dependent on sex hormones. METHODS: Male and female CD1 mice were treated for 4 weeks with supraphysiological doses (~250 µg/day) of corticosterone, the main glucocorticoid in rodents, or equivalent volume of vehicle (drinking water without corticosterone). To investigate the effects of sex hormones, a separate group of mice were either orchidectomised or ovariectomised prior to corticosterone treatment, with or without dihydrotestosterone replacement. Body composition was determined before and after corticosterone treatment, and insulin tolerance was assessed after 7 and 28 days of treatment. Adipocyte morphology was assessed in white and brown adipose tissues by immunohistochemistry, and fasting serum concentrations of NEFA, triacylglycerols, total cholesterol and free glycerol were measured using colorimetric assays. Obesity- and diabetes-related hormones were measured using multiplex assays, and RNA and protein expression in adipose tissues were measured by RT-PCR and immunoblotting, respectively. RESULTS: Chronic corticosterone treatment led to insulin resistance, fasting hyperinsulinaemia, increased adiposity and dyslipidaemia in male, but not female mice. In males, orchidectomy improved baseline insulin sensitivity and attenuated corticosterone-induced insulin resistance, but did not prevent fat accumulation. In androgen-deficient mice (orchidectomised males, and intact and ovariectomised females) treated with dihydrotestosterone, corticosterone treatment led to insulin resistance and dyslipidaemia. In brown adipose tissue, androgens were required for corticosterone-induced intracellular lipid accumulation ('whitening'), and dihydrotestosterone specifically exacerbated corticosterone-induced accumulation of white adipose tissue by increasing adipocyte hypertrophy. Androgens also suppressed circulating adiponectin concentrations, but corticosterone-induced insulin resistance did not involve additional suppression of adiponectin levels. In white adipose tissue, androgens were required for induction of the glucocorticoid target gene Gilz (also known as Tsc22d3) by corticosterone. CONCLUSIONS/INTERPRETATION: In mice, androgens potentiate the development of insulin resistance, fat accumulation and brown adipose tissue whitening following chronic glucocorticoid treatment.


Assuntos
Tecido Adiposo Marrom/metabolismo , Androgênios/metabolismo , Corticosterona/efeitos adversos , Glucocorticoides/efeitos adversos , Resistência à Insulina , Adipócitos/citologia , Adiponectina/metabolismo , Adiposidade , Animais , Composição Corporal , Feminino , Teste de Tolerância a Glucose , Inflamação , Insulina/metabolismo , Masculino , Camundongos , Obesidade , Fatores Sexuais
9.
J Clin Invest ; 128(11): 4745-4747, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277473

RESUMO

Bone metabolism is controlled by endocrine, paracrine, and inflammatory signals that continuously operate in health and disease. While these signals are critical for skeletal adaptation during development, longitudinal growth, and repair, disturbances such as sex hormone deficiency or chronic inflammation have unambiguously been linked to bone loss and skeletal fragility across species. In the current issue of the JCI, Khosla et al. evaluated the role of sympathetic outflow and present evidence to support the idea that the sympathetic nervous system regulates bone metabolism in humans, primarily via the ß1-adrenergic receptor.


Assuntos
Densidade Óssea , Osso e Ossos , Adrenérgicos , Humanos , Norepinefrina , Sistema Nervoso Simpático
10.
Endocrinology ; 158(6): 1939-1950, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368468

RESUMO

Chronic stress and depression are associated with alterations in the hypothalamic-pituitary-adrenal signaling cascade and considered a risk factor for bone loss and fractures. However, the mechanisms underlying the association between stress and poor bone health are unclear. Using a transgenic (tg) mouse model in which glucocorticoid signaling is selectively disrupted in mature osteoblasts and osteocytes [11ß-hydroxysteroid-dehydrogenase type 2 (HSD2)OB-tg mice], the present study examines the impact of chronic stress on skeletal metabolism and structure. Eight-week-old male and female HSD2OB-tg mice and their wild-type (WT) littermates were exposed to chronic mild stress (CMS) for the duration of 4 weeks. At the endpoint, L3 vertebrae and tibiae were analyzed by micro-computed tomography and histomorphometry, and bone turnover was measured biochemically. Compared with nonstressed controls, exposure to CMS caused an approximately threefold increase in serum corticosterone concentrations in WT and HSD2OB-tg mice of both genders. Compared with controls, CMS resulted in loss of vertebral trabecular bone mass in male WT mice but not in male HSD2OB-tg littermates. Furthermore, both tibial cortical area and area fraction were reduced in stressed WT but not in stressed HSD2OB-tg male mice. Osteoclast activity and bone resorption marker were increased in WT males following CMS, features absent in HSD2OB-tg males. Interestingly, CMS had little effect on vertebral and long-bone structural parameters in female mice. We conclude that in male mice, bone loss during CMS is mediated via enhanced glucocorticoid signaling in osteoblasts (and osteocytes) and subsequent activation of osteoclasts. Female mice appear resistant to the skeletal effects of CMS.


Assuntos
Reabsorção Óssea , Glucocorticoides/farmacologia , Osteoblastos/fisiologia , Estresse Psicológico/complicações , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Doença Crônica , Glucocorticoides/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Psicológico/patologia
11.
Steroids ; 116: 76-82, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27815034

RESUMO

In order to investigate the effects of glucocorticoid excess in rodent models, reliable methods of continuous glucocorticoid delivery are essential. The current study compares two methods of corticosterone (CS) delivery in regards to their ability to induce typical adverse outcomes such as fat accrual, insulin resistance, sarcopenia and bone loss. Eight-week-old mice received CS for 4weeks either via the drinking water (25-100µgCS/mL) or through weekly surgical implantation of slow release pellets containing 1.5mg CS. Both methods induced abnormal fat mass accrual, inhibited lean mass accretion and bone expansion, suppressed serum osteocalcin levels and induced severe insulin resistance. There was a clear dose dependant relationship between the CS concentrations in the drinking water and the severity of the phenotype, with a concentration of 50µg CS/mL drinking water most closely matching the metabolic changes induced by weekly pellet implantations. In contrast to pellets, however, delivery of CS via the drinking water resulted in a consistent diurnal exposure pattern, closely mimicking the kinetics of clinical glucocorticoid therapy. In addition, the method is safe, inexpensive, easily adjustable, non-invasive and avoids operative stress to the animals. Our data demonstrate that delivery of CS via the drinking water has advantages over weekly implantations of slow-release pellets. A dose of 50µg CS/mL drinking water is appropriate for the investigation of chronic glucocorticoid excess in mice.


Assuntos
Corticosterona/administração & dosagem , Corticosterona/farmacocinética , Água Potável/administração & dosagem , Água Potável/química , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/farmacocinética , Animais , Síndrome de Cushing/sangue , Síndrome de Cushing/tratamento farmacológico , Implantes de Medicamento/uso terapêutico , Resistência à Insulina/fisiologia , Masculino , Camundongos , Osteocalcina/sangue , Osteoporose/sangue , Osteoporose/tratamento farmacológico , Sarcopenia/sangue , Sarcopenia/tratamento farmacológico
13.
FASEB J ; 29(4): 1426-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25550458

RESUMO

Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, are among the most common mutations found in human cancer and have also recently been implicated in a range of overgrowth syndromes in humans. We have used a novel inducible "exon-switch" approach to knock in the constitutively active Pik3ca(H1047R) mutation into the endogenous Pik3ca gene of the mouse. Ubiquitous expression of the Pik3ca(H1047R) mutation throughout the body resulted in a dramatic increase in body weight within 3 weeks of induction (mutant 150 ± 5%; wild-type 117 ± 3%, mean ± sem), which was associated with increased organ size rather than adiposity. Severe metabolic effects, including a reduction in blood glucose levels to 59 ± 4% of baseline (11 days postinduction) and undetectable insulin levels, were also observed. Pik3ca(H1047R) mutant mice died earlier (median survival 46.5 d post-mutation induction) than wild-type control mice (100% survival > 250 days). Although deletion of Akt2 increased median survival by 44%, neither organ overgrowth, nor hypoglycemia were rescued, indicating that both the growth and metabolic functions of constitutive PI3K activity can be Akt2 independent. This mouse model demonstrates the critical role of PI3K in the regulation of both organ size and glucose metabolism at the whole animal level.


Assuntos
Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/sangue , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Substituição de Aminoácidos , Animais , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Glucose/metabolismo , Humanos , Hipoglicemia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aumento de Peso
14.
Bone ; 69: 12-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193158

RESUMO

States of glucocorticoid excess are associated with defects in chondrocyte function. Most prominently there is a reduction in linear growth but delayed healing of fractures that require endochondral ossification to also occur. In contrast, little is known about the role of endogenous glucocorticoids in chondrocyte function. As glucocorticoids exert their cellular actions through the glucocorticoid receptor (GR), we aimed to elucidate the role of endogenous glucocorticoids in chondrocyte function in vivo through characterization of tamoxifen-inducible chondrocyte-specific GR knockout (chGRKO) mice in which the GR was deleted at various post-natal ages. Knee joint architecture, cartilage structure, growth plates, intervertebral discs, long bone length and bone micro-architecture were similar in chGRKO and control mice at all ages. Analysis of fracture healing in chGRKO and control mice demonstrated that in metaphyseal fractures, chGRKO mice formed a larger cartilaginous callus at 1 and 2 week post-surgery, as well as a smaller amount of well-mineralized bony callus at the fracture site 4 week post-surgery, when compared to control mice. In contrast, chondrocyte-specific GR knockout did not affect diaphyseal fracture healing. We conclude that endogenous GC signaling in chondrocytes plays an important role during metaphyseal fracture healing but is not essential for normal long bone growth.


Assuntos
Desenvolvimento Ósseo/fisiologia , Cartilagem/crescimento & desenvolvimento , Condrócitos/metabolismo , Consolidação da Fratura/fisiologia , Glucocorticoides/metabolismo , Animais , Cartilagem/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
15.
Trends Endocrinol Metab ; 25(4): 197-211, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418120

RESUMO

Glucocorticoids (GCs) are highly effective in the treatment of inflammatory and autoimmune conditions but their therapeutic use is limited by numerous adverse effects. Recent insights into the mechanisms of action of both endogenous and exogenous GCs on bone cells have unlocked new approaches to the development of effective strategies for the prevention and treatment of GC-induced osteoporosis. Furthermore, topical studies in rodents indicate that the osteoblast-derived peptide, osteocalcin, plays a central role in the pathogenesis of GC-induced diabetes and obesity. These exciting findings mechanistically link the detrimental effects of GCs on bone and energy metabolism. In this article we review the physiology and pathophysiology of GC action on bone cells, and discuss current and emerging concepts regarding the molecular mechanisms underlying adverse effects of GCs such as osteoporosis and diabetes.


Assuntos
Osso e Ossos/metabolismo , Glucocorticoides/metabolismo , Animais , Osso e Ossos/patologia , Difosfonatos/uso terapêutico , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
16.
J Clin Invest ; 122(11): 4172-89, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23093779

RESUMO

Long-term glucocorticoid treatment is associated with numerous adverse outcomes, including weight gain, insulin resistance, and diabetes; however, the pathogenesis of these side effects remains obscure. Glucocorticoids also suppress osteoblast function, including osteocalcin synthesis. Osteocalcin is an osteoblast-specific peptide that is reported to be involved in normal murine fuel metabolism. We now demonstrate that osteoblasts play a pivotal role in the pathogenesis of glucocorticoid-induced dysmetabolism. Osteoblast-targeted disruption of glucocorticoid signaling significantly attenuated the suppression of osteocalcin synthesis and prevented the development of insulin resistance, glucose intolerance, and abnormal weight gain in corticosterone-treated mice. Nearly identical effects were observed in glucocorticoid-treated animals following heterotopic (hepatic) expression of both carboxylated and uncarboxylated osteocalcin through gene therapy, which additionally led to a reduction in hepatic lipid deposition and improved phosphorylation of the insulin receptor. These data suggest that the effects of exogenous high-dose glucocorticoids on insulin target tissues and systemic energy metabolism are mediated, at least in part, through the skeleton.


Assuntos
Anti-Inflamatórios/efeitos adversos , Corticosterona/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Osteoblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Corticosterona/farmacologia , Metabolismo Energético/genética , Glucocorticoides/farmacologia , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Resistência à Insulina/genética , Camundongos , Camundongos Transgênicos , Osteoblastos/patologia , Osteocalcina/biossíntese , Osteocalcina/genética , Ratos , Transdução de Sinais/genética
17.
Bone ; 49(4): 733-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21722764

RESUMO

BACKGROUND: The pathogenesis of glucocorticoid-induced osteoporosis remains ill defined. In this study, we examined the role of the osteoblast in mediating the effects of exogenous glucocorticoids on cortical and trabecular bone, employing the Col2.3-11ßHSD2 transgenic mouse model of osteoblast-targeted disruption of glucocorticoid signalling. METHODS: Eight week-old male transgenic (tg) and wild-type (WT) mice (n=20-23/group) were treated with either 1.5 mg corticosterone (CS) or placebo for 4 weeks. Serum tartrate-resistant acid phosphatase 5b (TRAP5b) and osteocalcin (OCN) were measured throughout the study. Tibiae and lumbar vertebrae were analysed by micro-CT and histomorphometry at endpoint. RESULTS: CS suppressed serum OCN levels in WT and tg mice, although they remained higher in tg animals at all time points (p<0.05). Serum TRAP5b levels increased in WT mice only. The effect of CS on cortical bone differed by site: At the endosteal surface, exposure to CS significantly increased bone resorption and reduced bone formation, resulting in a larger bone marrow cavity cross-sectional area (p<0.01). In contrast, at the pericortical surface bone resorption was significantly decreased accompanied with a significant increase in pericortical cross-sectional area (p<0.05) while bone formation remained unaffected. Vertebral cortical thickness and area were reduced in CS treatment mice. Tg mice were partially protected from the effects of exogenous CS, both on a cellular and structural level. At the CS doses used in this study, trabecular bone remained largely unaffected. CONCLUSION: Endocortical osteoblasts appear to be particularly sensitive to the detrimental actions of exogenous glucocorticoids. The increase in tibial pericortical cross-sectional area and the according changes in pericortical circumference suggest an anabolic bone response to GC treatment at this site. The protection of tg mice from these effects indicates that both catabolic and anabolic action of glucocorticoids are, at least in part, mediated by osteoblasts.


Assuntos
Osso e Ossos/efeitos dos fármacos , Corticosterona/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Animais , Biomarcadores/metabolismo , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Glucocorticoides/farmacologia , Masculino , Camundongos , Radiografia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Tíbia/anatomia & histologia , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
18.
Prostate ; 71(3): 289-97, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717994

RESUMO

BACKGROUND: Glucocorticoids influence prostate development and pathology, yet the underlying mechanisms including possible direct glucocorticoid effect on the prostate are not well characterized. METHODS: We evaluated the expression of the glucocorticoid receptor (GR) together with the effects of supraphysiological glucocorticoid (corticosterone) on mouse prostate morphology and epithelial proliferation. Mature male mice were treated by weekly subdermal implantation of depot pellets containing either 1.5 mg corticosterone or placebo providing steady-state release for 4 weeks. RESULTS: Corticosterone treatment significantly increased dorsolateral and anterior prostate weights as well as prostate epithelial cell proliferation while epithelial apoptosis remained low upon corticosterone treatment. Histological analysis of the anterior lobe demonstrated abnormal, highly disorganized luminal epithelium with frequent formation of bridge-like structures lined by continuous layer of basal cells not observed following placebo treatment. Molecular analysis revealed corticosterone-induced increase in expression of stromal growth factor Fgf10 which, together with prominent stromal GR expression, suggest that glucocorticoid modify stromal-to-epithelial signaling in the mouse prostate. The mitogenic effects were prostate specific and not mediated by systemic effects on testosterone production suggesting that corticosterone effects were primarily mediated via prostate GR expression. CONCLUSION: These data demonstrate that murine prostate is significantly and directly influenced by corticosterone treatment via aberrant stromal-to-epithelial growth factor signaling.


Assuntos
Corticosterona/toxicidade , Próstata/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Corticosterona/sangue , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Próstata/patologia , Receptores Androgênicos/análise , Receptores de Glucocorticoides/análise
19.
Steroids ; 74(2): 245-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19071150

RESUMO

BACKGROUND: Chronic administration of exogenous glucocorticoids is often required in experimental research. We compared the efficacy and reliability of three different methods of continuous glucocorticoid administration in mice. MATERIALS AND METHODS: Male CD1 Swiss White mice aged 7-9 weeks received corticosterone (CS) or carrier by either subcutaneous (s.c.) injection (n=15), s.c. implantation of micro-osmotic pumps (n=20) or s.c. implantation of slow-release pellets (n=20). Serial blood samples were taken for the measurement of plasma CS and osteocalcin (OC). Bone structural parameters were analysed by micro-computed tomography (micro-CT) in animals treated via slow-release pellets for 4 weeks. RESULTS: Injection of CS (10 mg/kg) resulted in peak plasma CS levels of up to 2600 microg/L after 1 h, with levels returning to baseline within 4 h post-injection. Micro-osmotic pumps failed to consistently alter plasma CS levels and had variable effects on plasma OC levels. Implantation of 10 mg CS pellets induced hypercorticosteronemia within 24 h but levels returned to baseline within 7 days. Plasma OC levels fell rapidly on day 1 and remained suppressed until day 7. Weekly replacement of pellets maintained elevated plasma CS and suppressed plasma OC concentrations, and resulted in significant bone loss at the tibia and spine after 28 days. CONCLUSION: Once-weekly s.c. implantation of slow-release pellets to mice appears to result in relatively consistent plasma CS and OC levels with significant biological effects. However, at least in our hands, no method delivered CS at a constant rate and variability in plasma CS levels was pronounced.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glucocorticoides/administração & dosagem , Animais , Doença Crônica , Corticosterona/administração & dosagem , Corticosterona/toxicidade , Implantes de Medicamento , Glucocorticoides/toxicidade , Injeções Subcutâneas , Masculino , Camundongos , Osmose , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA