RESUMO
Strong monochromatic point light sources such as Light Emitting Diodes (LED) or Lasers have been increasingly used in recent decades. This also raises the risk of misuse resulting in glare phenomena and associated visual impairment. The objective of this prospective and partially blinded study was the visualization and characterization of glare-induced scotomas in visual field by dazzling with monochromatic point light sources in terms of disability and discomfort glare. Automated threshold perimetry under dazzling by LED exposure at three different wavelengths (470, 530 and 625 nm) and four different intensities (25, 50, 75, and 100%) was performed in 31 healthy subjects resulting in 434 visual field examinations. Visual disability was measured by sensitivity loss in the central 30°as compared to unexposed controls and visualized by reconstruction of mean visual fields for each group via backward-calculation. Psychological glare was assessed by subsequent questionnaire and evaluated based on the de Boer rating scale of discomfort. Increasing glare intensities resulted in a significant decrease in mean sensitivity for all wavelengths tested, paralleled by an increase of discomfort glare. The loss of sensitivity was scattered over all quadrants with accentuation of the corresponding mean exposure area. Reconstructed visual fields confirmed visual impairment in all quadrants at an extent of at least 30°. We conclude that even off-axis light exposure may affect central visual field perception. Our results extend previous research on directed light interaction and contribute in explaining its incapacitating impact on human performance.
Assuntos
Ofuscação , Escotoma , Testes de Campo Visual , Campos Visuais , Humanos , Masculino , Feminino , Campos Visuais/fisiologia , Adulto , Escotoma/fisiopatologia , Estudos Prospectivos , Testes de Campo Visual/métodos , Pessoa de Meia-Idade , Adulto Jovem , Limiar Sensorial/fisiologia , Percepção Visual/fisiologiaRESUMO
The application of a high energy laser beam in a maritime scenario necessitates a laser safety concept to prevent injury to personnel or uninvolved third parties from uncontrolled reflections of laser light from the sea surface. Therefore, it is crucial to have knowledge of the amount and direction of reflected laser energy, which varies statistically and depends largely on the dynamics of the wavy sea surface. These dynamics are primarily influenced by wind speed, wind direction, and fetch. An analytical model is presented for calculating the time-averaged spatial intensity distribution of the laser beam reflected at the dynamic sea surface. The model also identifies the hazard areas inside which laser intensities exceed a fixed exposure limit. Furthermore, as far as we know, our model is unique in its ability to calculate the probabilities of potentially eye-damaging glints for arbitrary observer positions, taking into account the slope statistics of gravity waves. This is a critical first step toward an extensive risk analysis. The simulation results are presented on a hemisphere of observer positions with fixed radii from the laser spot center. The advantage of the analytical model over our numeric (dynamic) model is its fast computation time. A comparison of the results of our new analytical model with those of the previous numerical model is presented.
RESUMO
When using kilowatt-class lasers in outdoor environments, ensuring laser safety turns out to be a complex issue due to the large safety areas that must be respected. For the special cases of collimated or focused laser radiation reflected from ideally flat but naturally rough metallic surfaces, the classical laser hazard analysis is deemed insufficient. In order to investigate the corresponding hazard areas for the aforementioned cases, we performed experiments on laser-matter interactions. Using high-power laser radiation, we studied the spatial and temporal reflection characteristics from four different metallic samples. For the evaluation of total reflection characteristics, we performed curve-fitting methods comprising Gaussian-like specular components, diffuse scattering components according to the ABg-scatter model and Lambertian components. For the investigation of occurring caustics, we developed a dedicated model in order to assess the divergence of the contained structures as a function of distance. Our evaluations have shown that the majority of the reflected power is scattered and based on these findings, that resulting nominal optical hazard distance values, even under worst-case assumptions, are significantly smaller than those of the non-reflected laser beam.