RESUMO
Silicon carbide (SiC) exhibits promising material properties for nonlinear integrated optics. We report on a SiC-on-insulator platform based on crystalline 4H-SiC and demonstrate high-confinement SiC microring resonators with sub-micron waveguide cross-sectional dimensions. The Q factor of SiC microring resonators in such a sub-micron waveguide dimension is improved by a factor of six after surface roughness reduction by applying a wet oxidation process. We achieve a high Q factor (73,000) for such devices and show engineerable dispersion from normal to anomalous dispersion by controlling the waveguide cross-sectional dimension, which paves the way toward nonlinear applications in SiC microring resonators.
RESUMO
We demonstrate a compact fibre-based laser system at 2.05 microns stabilized to a CO2 transition using frequency modulation spectroscopy of a gas-filled hollow-core fibre. The laser exhibits an absolute frequency accuracy of 5 MHz, a frequency stability noise floor of better than 7 kHz or 5 × 10-11 and is tunable within ±200 MHz from the molecular resonance frequency while retaining roughly this stability and accuracy.