Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 24(5): 766-779, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398958

RESUMO

Low-temperature thermal acclimation may require adjustments to N and water use to sustain photosynthesis because of slow enzyme functioning and high water viscosity. However, understanding of photosynthetic acclimation to temperatures below 11 °C is limited. We acclimated Populus balsamifera to 6 °C and 10 °C (6A and 10A, respectively) and provided the trees with either high or low N fertilizer. We measured net CO2 assimilation (Anet ), stomatal conductance (gs ), maximum rates of Rubisco carboxylation (Vcmax ), electron transport (Jmax ) and dark respiration (Rd ) at leaf temperatures of 2, 6, 10, 14 and 18 °C, along with leaf N concentrations. The 10A trees had higher Anet than the 6A trees at warmer leaf temperatures, which was correlated with higher gs in the 10A trees. The instantaneous temperature responses of Vcmax , Jmax and Rd were similar for trees from both acclimation temperatures. While soil N availability increased leaf N concentrations, this had no effect on acclimation of photosynthesis or respiration. Our results indicate that acclimation below 11 °C occurred primarily through changes in stomatal conductance, not photosynthetic biochemistry, and was unaffected by short-term N supply. Thermal acclimation of stomatal conductance should therefore be a priority for future carbon cycle model development.


Assuntos
Populus , Aclimatação/fisiologia , Dióxido de Carbono , Nitrogênio , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Populus/fisiologia , Temperatura , Árvores/fisiologia , Água
2.
Plant Biol (Stuttg) ; 20(2): 280-287, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29148214

RESUMO

Despite evidence that prior exposure to drought can increase subsequent plant freezing tolerance, few studies have explored such interactions over ecologically relevant time spans. We examined the combined effects of drought and subsequent freezing on tiller growth and leaf sugar concentrations in the grass, Poa pratensis. We exposed tillers to no drought (-0.04 MPa), moderate drought (-0.19 MPa) or severe drought (-0.42 MPa) for 3 weeks in summer. Tillers were then frozen in autumn or spring at -5 °C (frost damage) or at 0 °C (control) for 3 days and harvested after a re-growth period. For shoot growth, there was a significant interaction between drought and autumn freezing, whereby the relative effect of freezing on growth was least for the plants previously exposed to severe drought; however, there was no significant interaction between drought and spring freezing. For root growth, there were no significant interactions between drought and freezing in either season. Leaf sugar concentrations increased significantly with drought intensity, but these effects dissipated within a month, prior to the onset of the autumn freezing treatment. Overall, our results suggest that interactions between prior drought and subsequent freezing in P. pratensis may be most relevant in the context of autumn freezing, and despite the important role of soluble sugars in increasing both drought and freezing tolerance in this species, the retention of these compounds after drought stress does not appear to explain the occurrence of drought-frost interactions at ecologically relevant time scales.


Assuntos
Poa/fisiologia , Aclimatação/fisiologia , Desidratação/fisiopatologia , Ecologia , Congelamento , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA