Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ACS Med Chem Lett ; 15(5): 714-721, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746903

RESUMO

We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed. In vivo evaluation of an advanced analogue showed significant, dose-dependent modulation of inflammatory cytokines in a mouse model. In pursuit of incorporating a highly engineered bridged ether that was crucial to metabolic stability in this series, significant synthetic challenges were overcome to enable the preparation of the analogues.

2.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695469

RESUMO

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Assuntos
Encéfalo , Quinases Associadas a Receptores de Interleucina-1 , Inibidores de Proteínas Quinases , Animais , Cães , Masculino , Camundongos , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/síntese química , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade
3.
J Med Chem ; 67(6): 4676-4690, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467640

RESUMO

Interleukin receptor-associated kinase 4 (IRAK4) is a key node of signaling within the innate immune system that regulates the production of inflammatory cytokines and chemokines. The presence of damage-associated molecular patterns (DAMPs) after tissue damage such as stroke or traumatic brain injury (TBI) initiates signaling through the IRAK4 pathway that can lead to a feed-forward inflammatory loop that can ultimately hinder patient recovery. Herein, we describe the first potent, selective, and CNS-penetrant IRAK4 inhibitors for the treatment of neuroinflammation. Lead compounds from the series were evaluated in CNS PK/PD models of inflammation, as well as a mouse model of ischemic stroke. The SAR optimization detailed within culminates in the discovery of BIO-7488, a highly selective and potent IRAK4 inhibitor that is CNS penetrant and has excellent ADME properties.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , AVC Isquêmico , Camundongos , Animais , Humanos , Transdução de Sinais , Citocinas , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
4.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357922

RESUMO

Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Pré-Escolar , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Interferon-alfa/genética , Camundongos Transgênicos
5.
Toxicol Pathol ; 52(1): 35-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385340

RESUMO

Recombinant adeno-associated virus (AAV)-mediated degeneration of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) has been observed in non-human primates (NHPs) following intravenous (IV) and intrathecal (IT) delivery. Administration of recombinant AAV encoding a human protein transgene via a single intra-cisterna magna (ICM) injection in New Zealand white rabbits resulted in histopathology changes very similar to NHPs: mononuclear cell infiltration, degeneration/necrosis of sensory neurons, and nerve fiber degeneration of sensory tracts in the spinal cord and of multiple nerves. AAV-associated clinical signs and incidence/severity of histologic findings indicated that rabbits were equally or more sensitive than NHPs to sensory neuron damage. Another study using human and rabbit transgene constructs of the same protein demonstrated comparable changes suggesting that the effects are not an immune response to the non-self protein transgene. Rabbit has not been characterized as a species for general toxicity testing of AAV gene therapies, but these studies suggest that it may be an alternative model to investigate mechanisms of AAV-mediated neurotoxicity and test novel AAV designs mitigating these adverse effects.


Assuntos
Dependovirus , Gânglios Espinais , Animais , Coelhos , Dependovirus/genética , Vetores Genéticos , Masculino , Humanos , Transgenes , Feminino , Células Receptoras Sensoriais
6.
J Proteome Res ; 20(7): 3689-3700, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34085531

RESUMO

Novel therapies and biomarkers are needed for the treatment of acute ischemic stroke (AIS). This study aimed to provide comprehensive insights into the dynamic proteome changes and underlying molecular mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was conducted on mouse brain cortex tissue from five time points up to 4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion (DH-MCAO) model. We found that nearly half of the detected proteome was altered following stroke, but only ∼8.6% of the changes were at relatively large scales. Clustering on the changed proteome defined four distinct expression patterns characterized by temporal and quantitative changes in innate and adaptive immune response pathways and cytoskeletal and neuronal remodeling. Further analysis on a subset of 309 "top hits", which temporally responded to stroke with relatively large and sustained changes, revealed that they were mostly secreted proteins, highly correlated to different cortical cytokines, and thereby potential pharmacodynamic biomarker candidates for inflammation-targeting therapies. Closer examination of the top enriched neurophysiologic pathways identified 57 proteins potentially associated with poststroke recovery. Altogether, our study generated a rich dataset with candidate proteins worthy of further validation as biomarkers and/or therapeutic targets for stroke. The proteomics data are available in the PRIDE Archive with identifier PXD025077.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Proteoma/genética , Proteômica
7.
Proc Natl Acad Sci U S A ; 116(16): 7941-7950, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944222

RESUMO

Studies over the past decade have revealed a central role for innate immune sensors in autoimmune and autoinflammatory diseases. cGAS, a cytosolic DNA sensor, detects both foreign and host DNA and generates a second-messenger cGAMP, which in turn binds and activates stimulator of IFN genes (STING), leading to induction of type I interferons and inflammatory cytokines. Recently, gain-of-function mutations in STING have been identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients present with early-onset systemic inflammation and interstitial lung disease, resulting in pulmonary fibrosis and respiratory failure. Here, we describe two independent SAVI mouse models, harboring the two most common mutations found in patients. A direct comparison of these strains reveals a hierarchy of immune abnormalities, lung inflammation and fibrosis, which do not depend on either IFN-α/ß receptor signaling or mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptotic cell death pathways. Furthermore, radiation chimera experiments reveal how bone marrow from the V154M mutant mice transfer disease to the WT host, whereas the N153S does not, indicating mutation-specific disease outcomes. Moreover, using radiation chimeras we find that T cell lymphopenia depends on T cell-intrinsic expression of the SAVI mutation. Collectively, these mutant mice recapitulate many of the disease features seen in SAVI patients and highlight mutation-specific functions of STING that shed light on the heterogeneity observed in SAVI patients.


Assuntos
Modelos Animais de Doenças , Interferon Tipo I/metabolismo , Doenças Vasculares , Animais , Morte Celular/imunologia , Citocinas/metabolismo , Mutação com Ganho de Função , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Doenças Vasculares/genética , Doenças Vasculares/imunologia , Doenças Vasculares/fisiopatologia
8.
Blood Adv ; 2(21): 2904-2916, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30396910

RESUMO

The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.


Assuntos
Fator VIII/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Células Cultivadas , Fator VIII/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hemofilia A/tratamento farmacológico , Hemofilia A/patologia , Humanos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Leucócitos Mononucleares/citologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
9.
Sci Signal ; 11(541)2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065029

RESUMO

Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin ß receptor (LTßR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTßR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Osteossarcoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Indóis/farmacologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Propionatos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma , Transdução de Sinais , Receptor de TWEAK/antagonistas & inibidores , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Células Tumorais Cultivadas , Quinase Induzida por NF-kappaB
10.
Transfusion ; 54(1): 179-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23621760

RESUMO

BACKGROUND: Red blood cell (RBC) alloantibodies to nonself antigens may develop after transfusion or pregnancy, leading to morbidity and mortality in the form of hemolytic transfusion reactions or hemolytic disease of the newborn. A better understanding of the mechanisms of RBC alloantibody induction, or strategies to mitigate the consequences of such antibodies, may ultimately improve transfusion safety. However, such studies are inherently difficult in humans. STUDY DESIGN AND METHODS: We recently generated transgenic mice with RBC-specific expression of the human KEL glycoprotein, specifically the KEL2 or KEL1 antigens. Herein, we investigate recipient alloimmune responses to transfused RBCs in this system. RESULTS: Transfusion of RBCs from KEL2 donors into wild-type recipients (lacking the human KEL protein but expressing the murine KEL ortholog) resulted in dose-dependent anti-KEL glycoprotein immunoglobulin (Ig)M and IgG antibody responses, enhanced by recipient inflammation with poly(I:C). Boostable responses were evident upon repeat transfusion, with morbid-appearing alloimmunized recipients experiencing rapid clearance of transfused KEL2 but not control RBCs. Although KEL1 RBCs were also immunogenic after transfusion into wild-type recipients, transfusion of KEL1 RBCs into KEL2 recipients or vice versa failed to lead to detectable anti-KEL1 or anti-KEL2 responses. CONCLUSIONS: This murine model, with reproducible and clinically significant KEL glycoprotein alloantibody responses, provides a platform for future mechanistic studies of RBC alloantibody induction and consequences. Long-term translational goals of these studies include improving transfusion safety for at-risk patients.


Assuntos
Transfusão de Eritrócitos/métodos , Eritrócitos/imunologia , Isoanticorpos/biossíntese , Sistema do Grupo Sanguíneo de Kell/imunologia , Anemia Hemolítica/genética , Anemia Hemolítica/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Incompatibilidade de Grupos Sanguíneos/genética , Incompatibilidade de Grupos Sanguíneos/imunologia , Eritrócitos/metabolismo , Humanos , Inflamação/imunologia , Sistema do Grupo Sanguíneo de Kell/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli I-C
11.
Blood ; 122(8): 1494-504, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23801629

RESUMO

Exposure to nonself red blood cell (RBC) antigens, either from transfusion or pregnancy, may result in alloimmunization and incompatible RBC clearance. First described as a pregnancy complication 80 years ago, hemolytic disease of the fetus and newborn (HDFN) is caused by alloimmunization to paternally derived RBC antigens. Despite the morbidity/mortality of HDFN, women at risk for RBC alloimmunization have few therapeutic options. Given that alloantibodies to antigens in the KEL family are among the most clinically significant, we developed a murine model with RBC-specific expression of the human KEL antigen to evaluate the impact of maternal/fetal KEL incompatibility. After exposure to fetal KEL RBCs during successive pregnancies with KEL-positive males, 21 of 21 wild-type female mice developed anti-KEL alloantibodies; intrauterine fetal anemia and/or demise occurred in a subset of KEL-positive pups born to wild type, but not agammaglobulinemic mothers. Similar to previous observations in humans, pregnancy-associated alloantibodies were detrimental in a transfusion setting, and transfusion-associated alloantibodies were detrimental in a pregnancy setting. This is the first pregnancy-associated HDFN model described to date, which will serve as a platform to develop targeted therapies to prevent and/or mitigate the dangers of RBC alloantibodies to fetuses and newborns.


Assuntos
Anemia Hemolítica/imunologia , Eritrócitos/citologia , Isoanticorpos/imunologia , Sistema do Grupo Sanguíneo de Kell/imunologia , Modelos Animais , Anemia Hemolítica/genética , Animais , Transfusão de Sangue , Citocinas/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Imunoglobulina G/imunologia , Sistema do Grupo Sanguíneo de Kell/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Prenhez
12.
Transfusion ; 52(12): 2620-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22494154

RESUMO

BACKGROUND: KEL1, also known as "K", is one of the most immunogenic red blood cell (RBC) antigens. KEL2, also known as "k," differs from KEL1 by a single amino acid. Anti-Kell system antibodies can lead to significant adverse clinical outcomes in humans, including hemolytic complications in alloimmunized transfusion recipients or in infants of alloimmunized mothers. To provide a platform for in-depth immunologic studies of alloimmunization and subsequent sequelae, we generated transgenic mice expressing the human KEL1 or KEL2 antigens. STUDY DESIGN AND METHODS: Vectors were created in which cDNAs encoding either KEL1 or KEL2 were regulated by an erythroid specific ß-globin promoter and enhancer. Pronuclear microinjections were carried out into a C57BL6 background, and founder pups were identified by polymerase chain reaction and screened for expression by flow cytometry. RBC life span and antigen stability were assessed by dye labeling RBCs, transfusing into agammaglobulinemic (µMT) recipients, and tracking by flow cytometry. RESULTS: The expression of either KEL1 or KEL2 is RBC specific and first occurs on early RBC precursors. Both KEL1 and KEL2 RBCs have a normal circulatory life span and stable antigen expression. Expression of KEL1 or KEL2 does not result in altered levels of murine Kell, and resulting RBCs have normal hematologic variables. CONCLUSION: The KEL1 and KEL2 mice represent the first murine system of RBC immunity with antithetical antigens, allowing a more precise modeling of human RBC immunology in general and also a platform for development of novel therapeutics to prevent or minimize the dangers of RBC alloimmunization to the KEL1 and KEL2 antigens in particular.


Assuntos
Eritrócitos/imunologia , Sistema do Grupo Sanguíneo de Kell/genética , Sistema do Grupo Sanguíneo de Kell/imunologia , Camundongos Transgênicos , Modelos Animais , Animais , Transfusão de Sangue , Epitopos/genética , Epitopos/imunologia , Eritrócitos/citologia , Biblioteca Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transgenes/genética
13.
Ethics Behav ; 5(1): 25-48, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-11654169

RESUMO

A series of studies investigated the capacity of children between the ages of 7 and 12 to give free and informed consent to participation in psychological research. Children were reasonably accurate in describing the purpose of studies, but many did not understand the possible benefits or especially the possible risks of participating. In several studies children's consent was not affected by the knowledge that their parents had given their permission or by the parents saying that they would not be upset if the children refused. In contrast, other studies found that children were much more likely to stop their participation if the experimenter said explicitly that she would not be upset if they stopped. We suggest that experimenters should pay more attention to describing the possible risks and benefits of participation in research, and that they should also make it clearer to children that they are free to stop once they have begun.


Assuntos
Pesquisa Comportamental , Criança , Cognição , Compreensão , Consentimento Livre e Esclarecido , Competência Mental , Psicologia , Pesquisa , Canadá , Coerção , Pesquisa Empírica , Estudos de Avaliação como Assunto , Experimentação Humana , Humanos , Relações Pais-Filho , Sujeitos da Pesquisa , Relações Pesquisador-Sujeito , Risco , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA