Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(48): 26075-26085, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987645

RESUMO

The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.


Assuntos
Netropsina , Nylons , Netropsina/química , DNA/química , Oligonucleotídeos , Pirróis/química , Conformação de Ácido Nucleico
2.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873139

RESUMO

The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an anti-parallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.

3.
Acta Biomater ; 146: 10-22, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523414

RESUMO

DNA nanotechnology has yielded remarkable advances in  composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.


Assuntos
Nanoestruturas , DNA/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Nanotecnologia/métodos
4.
ACS Appl Mater Interfaces ; 13(39): 46375-46390, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569777

RESUMO

DNA nanostructures (DNs) can be designed in a controlled and programmable manner, and these structures are increasingly used in a variety of biomedical applications, such as the delivery of therapeutic agents. When exposed to biological liquids, most nanomaterials become covered by a protein corona, which in turn modulates their cellular uptake and the biological response they elicit. However, the interplay between living cells and designed DNs are still not well established. Namely, there are very limited studies that assess protein corona impact on DN biological activity. Here, we analyzed the uptake of functionalized DNs in three distinct hepatic cell lines. Our analysis indicates that cellular uptake is linearly dependent on the cell size. Further, we show that the protein corona determines the endolysosomal vesicle escape efficiency of DNs coated with an endosome escape peptide. Our study offers an important basis for future optimization of DNs as delivery systems for various biomedical applications.


Assuntos
DNA/metabolismo , Endossomos/metabolismo , Nanoestruturas/química , Coroa de Proteína/metabolismo , Adsorção , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular Tumoral , DNA/química , Humanos , Lisossomos/metabolismo , Conformação de Ácido Nucleico , Coroa de Proteína/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-34008347

RESUMO

Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self-assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus-responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Assuntos
Nanoestruturas , DNA , Sistemas de Liberação de Medicamentos , Nanotecnologia , Oligonucleotídeos
6.
J Biol Chem ; 294(32): 12157-12166, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235519

RESUMO

Degradation of polysaccharides is central to numerous biological and industrial processes. Starch-active polysaccharide monooxygenases (AA13 PMOs) oxidatively degrade starch and can potentially be used with industrial amylases to convert starch into a fermentable carbohydrate. The oxidative activities of the starch-active PMOs from the fungi Neurospora crassa and Myceliophthora thermophila, NcAA13 and MtAA13, respectively, on three different starch substrates are reported here. Using high-performance anion-exchange chromatography coupled with pulsed amperometry detection, we observed that both enzymes have significantly higher oxidative activity on amylose than on amylopectin and cornstarch. Analysis of the product distribution revealed that NcAA13 and MtAA13 more frequently oxidize glycosidic linkages separated by multiples of a helical turn consisting of six glucose units on the same amylose helix. Docking studies identified important residues that are involved in amylose binding and suggest that the shallow groove that spans the active-site surface of AA13 PMOs favors the binding of helical amylose substrates over nonhelical substrates. Truncations of NcAA13 that removed its native carbohydrate-binding module resulted in diminished binding to amylose, but truncated NcAA13 still favored amylose oxidation over other starch substrates. These findings establish that AA13 PMOs preferentially bind and oxidize the helical starch substrate amylose. Moreover, the product distributions of these two enzymes suggest a unique interaction with starch substrates.


Assuntos
Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Amido/metabolismo , Amilose/química , Amilose/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Simulação de Acoplamento Molecular , Neurospora crassa/enzimologia , Oxirredução , Conformação Proteica em alfa-Hélice , Sordariales/enzimologia , Amido/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA