Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Periodontal Res ; 55(1): 107-115, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31552683

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal disease (PD) afflicts approximately 50% of the population in the United States and is characterized by chronic inflammation of the periodontium that can lead to loss of the periodontal ligament through collagen degradation, loss of alveolar bone, and to eventual tooth loss. Previous studies have implicated transglutaminase (TG) activity in promoting thin collagen I fiber morphology and decreased mechanical strength in homeostatic PDL. The aim of this study was to determine whether TG activity influenced collagen assembly in PDL in the setting of periodontal disease. MATERIAL AND METHODS: A ligature model was used to induce clinically relevant PD in mice. Mice with ligature were assessed at 5 and 14 days to determine PDL collagen morphology, transglutaminase (TG) activity, and bone loss. The effects of inhibition of TG on PDL were assessed by immunohistochemistry and second-harmonic generation (SHG) to visualize collagen fibers in native tissue. RESULTS: Ligature placement around the 2nd molar resulted in significant bone loss and a decrease in total collagen content after 5 days of ligature placement. A significant increase in thin over thick fibers was also demonstrated in mice with ligature at 5 days associated with apparent increases in immunoreactivity for TG2 and for TG-mediated N-ε-γ-glutamyl cross-links in PDL. Inhibition of TG activity increased total collagen and thick collagen fiber content over vehicle control in mice with ligature for 5 days. SHG of PDL was used to visualize and quantify the effects of TG inhibition on enhanced collagen fiber organization in unfixed control and diseased PDL. CONCLUSION: These studies support a role of TG in regulating collagen fiber assembly and suggest that strategies to inhibit TG activity in disease might contribute to restoration of PDL tissue integrity.


Assuntos
Colágeno/metabolismo , Ligamento Periodontal/enzimologia , Periodontite/enzimologia , Transglutaminases/antagonistas & inibidores , Perda do Osso Alveolar/patologia , Aminas/farmacologia , Animais , Biotina/análogos & derivados , Biotina/farmacologia , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Microtomografia por Raio-X
2.
PLoS One ; 12(2): e0173209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28245286

RESUMO

The periodontal ligament (PDL) is a fibrous connective tissue that anchors tooth cementum into alveolar bone. Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein known to influence collagen fiber assembly in the PDL. In contrast, functional properties of the N-propeptide of collagen I, encoded in exon 2 of the COL1A1 gene, are poorly understood. In this study, the PDL of collagen I exon 2-deleted (wt/ko), SPARC-null (ko/wt), and double transgenic (ko/ko) mice were evaluated in terms of cellularity, collagen area, fiber morphology, and extraction force and compared to WT (wt/wt) mice. Picro sirius red staining indicated a decrease in total PDL collagen content in each of the transgenic mice compared to WT at 1 and 3 month age points. At 12 months, only SPARC-null (ko/wt) and double-null PDL demonstrated less total collagen versus WT. Likewise, an increase in thin PDL collagen fibers was observed at 1 and 3 months in each transgenic, with increases only in SPARC-null and double-null mice at 12 months. The force required for tooth extraction was significantly reduced in SPARC-null versus exon 2-deleted and WT mice, whereas double-null mice demonstrated further decreases in force required for tooth extraction. The number of proliferating fibroblasts and number and size of epithelial rests of Malassez were increased in each transgenic versus WT with double-null PDL exhibiting highest levels of proliferation and rests of Malassez at 1 month of age. Consistent with increases in PDL collagen in exon-2 deleted mice, with age, numbers of rests decreased at 12 months in this genotype. These results demonstrate for the first time a functional role of the N-propeptide in regulating collagen fiber assembly and cell behavior and suggest that SPARC and the N-propeptide of collagen I have distinct activities in regulating collagen fiber assembly and fibroblast function.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Osteonectina/metabolismo , Ligamento Periodontal/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Colágeno Tipo I/genética , Éxons/genética , Feminino , Imunofluorescência , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteonectina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA