Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 105(1-1): 014904, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193203

RESUMO

Quantifying the ways in which local particle rearrangements contribute to macroscopic plasticity is one of the fundamental pursuits of granular mechanics and soft matter physics. Here we examine local rearrangements that occur naturally during the deformation of three samples of 3D granular materials subjected to distinct boundary conditions by employing in situ x-ray measurements of particle-resolved structure and stress. We focus on five distinct rearrangement measures, their statistics, interrelationships, contributions to macroscopic deformation, repeatability, and dependence on local structure and stress. Our most significant findings are that local rearrangements (1) are correlated on a scale of three to four particle diameters, (2) exhibit volumetric strain-shear strain and nonaffine displacement-rotation coupling, (3) exhibit correlations that suggest either rearrangement repeatability or that rearrangements span multiple steps of incremental sample strain, and (4) show little dependence on local stress but correlate with quantities describing local structure, such as porosity. Our results are presented in the context of relevant plasticity theories and are consistent with recent findings suggesting that local structure may play at least as important of a role as local stress in determining the nature of local rearrangements.

2.
Proc Natl Acad Sci U S A ; 117(28): 16234-16242, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601178

RESUMO

Ultrasound propagation through externally stressed, disordered granular materials was experimentally and numerically investigated. Experiments employed piezoelectric transducers to excite and detect longitudinal ultrasound waves of various frequencies traveling through randomly packed sapphire spheres subjected to uniaxial compression. The experiments featured in situ X-ray tomography and diffraction measurements of contact fabric, particle kinematics, average per-particle stress tensors, and interparticle forces. The experimentally measured packing configuration and inferred interparticle forces at different sample stresses were used to construct spring networks characterized by Hessian and damping matrices. The ultrasound responses of these network were simulated to investigate the origins of wave velocity, acoustic paths, dispersion, and attenuation. Results revealed that both packing structure and interparticle force heterogeneity played an important role in controlling wave velocity and dispersion, while packing structure alone quantitatively explained most of the observed wave attenuation. This research provides insight into time- and frequency-domain features of wave propagation in randomly packed granular materials, shedding light on the fundamental mechanisms controlling wave velocities, dispersion, and attenuation in such systems.

3.
J Appl Crystallogr ; 51(Pt 4): 1021-1034, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30100826

RESUMO

Three-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution in situ. Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort to date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles. Therefore, the focus of the present paper is on the mechanics of several hundred angular particles during compaction using in situ 3DXRD to study the crystal structure, kinematics, stresses and rotations of angular quartz grains. Comparisons are also made between the compaction response of angular grains and that of spherical grains, and stress-induced twinning within individual grains is discussed.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 015601, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18351908

RESUMO

We investigate the propagation of highly nonlinear solitary waves in heterogeneous, periodic granular media using experiments, numerical simulations, and theoretical analysis. We examine periodic arrangements of particles in experiments in which stiffer and heavier beads (stainless steel) are alternated with softer and lighter ones (polytetrafluoroethylene beads). We find good agreement between experiments and numerics in a model with Hertzian interactions between adjacent beads, which in turn agrees very well with a theoretical analysis of the model in the long-wavelength regime that we derive for heterogeneous environments and general bead interactions. Our analysis encompasses previously studied examples as special cases and also provides key insights into the influence of the dimer lattice on the properties (width and propagation speed) of the highly nonlinear wave solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA