Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1286565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156002

RESUMO

The biosynthetic potential of 11 Brevibacillus spp. strains was investigated by combination of genome mining with mass spectrometric analysis using MALDI-TOF mass spectrometry. These endophytic, plant associated Brevibacillus strains were isolated from crop plants, such as coffee and black pepper, in Vietnam. Draft genomes of these strains were available. They were classified (a) by comparison with type strains and a collection of genome-sequenced Brevibacillus spp. deposited in the NCBI data base as well as (b) by construction of a phylogenetic tree from the core sequences of publicly available genomes of Brevibacillus strains. They were identified as Brevibacillus brevis (1 strain); parabrevis (2 strains); porteri (3 strains); and 5 novel Brevibacillus genomospecies. Our work was specifically focused on the detection and characterization of nonribosomal peptides produced by these strains. Structural characterization of these compounds was performed by LIFT-MALDI-TOF/TOF mass spectrometric sequence analysis. The highlights of our work were the demonstration of the tyrocidines, a well-known family of cyclodecapeptides of great structural variability, as the main products of all investigated strains and the identification of a novel class of pentapeptides produced by B. brevis; B. schisleri; and B. porteri which we designate as brevipentins. Our biosynthetic studies demonstrate that knowledge of their biosynthetic capacity can efficiently assist classification of Brevibacillus species.

2.
Microorganisms ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004689

RESUMO

Seventeen bacterial strains able to suppress plant pathogens have been isolated from healthy Vietnamese crop plants and taxonomically assigned as members of the Bacillus cereus group. In order to prove their potential as biocontrol agents, we perform a comprehensive analysis that included the whole-genome sequencing of selected strains and the mining for genes and gene clusters involved in the synthesis of endo- and exotoxins and secondary metabolites, such as antimicrobial peptides (AMPs). Kurstakin, thumolycin, and other AMPs were detected and characterized by different mass spectrometric methods, such as MALDI-TOF-MS and LIFT-MALDI-TOF/TOF fragment analysis. Based on their whole-genome sequences, the plant-associated isolates were assigned to the following species and subspecies: B. cereus subsp. cereus (6), B. cereus subsp. bombysepticus (5), Bacillus tropicus (2), and Bacillus pacificus. These three isolates represent novel genomospecies. Genes encoding entomopathogenic crystal and vegetative proteins were detected in B. cereus subsp. bombysepticus TK1. The in vitro assays revealed that many plant-associated isolates enhanced plant growth and suppressed plant pathogens. Our findings indicate that the plant-associated representatives of the B. cereus group are a rich source of putative antimicrobial compounds with potential in sustainable agriculture. However, the presence of virulence genes might restrict their application as biologicals in agriculture.

3.
Front Plant Sci ; 14: 1194887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426979

RESUMO

Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.

4.
Pathogens ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832640

RESUMO

Paenibacilli are efficient producers of potent agents against bacterial and fungal pathogens, which are of great interest both for therapeutic applications in medicine as well as in agrobiotechnology. Lipopeptides produced by such organisms play a major role in their potential to inactivate pathogens. In this work we investigated two lipopeptide complexes, the fusaricidins and the polymyxins, produced by Paenibacillus polymyxa strains DSM 32871 and M1 by MALDI-TOF mass spectrometry. The fusaricidins show potent antifungal activities and are distinguished by an unusual variability. For strain DSM 32871 we identified numerous yet unknown variants mass spectrometrically. DSM 32871 produces polymyxins of type E (colistins), while M1 forms polymyxins P. For both strains, novel but not yet completely characterized polymyxin species were detected, which possibly are glycosylated. These compounds may be of interest therapeutically, because polymyxins have gained increasing attention as last-resort antibiotics against multiresistant pathogenic Gram-negative bacteria. In addition, the volatilomes of DSM 32781 and M1 were investigated with a GC-MS approach using different cultivation media. Production of volatile organic compounds (VOCs) was strain and medium dependent. In particular, strain M1 manifested as an efficient VOC-producer that exhibited formation of 25 volatiles in total. A characteristic feature of Paenibacilli is the formation of volatile pyrazine derivatives.

5.
Front Microbiol ; 11: 1432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695084

RESUMO

Plant growth promoting rhizobacteria attain increasing importance in agriculture as biofertilizers and biocontrol agents. These properties significantly depend on the formation of bioactive compounds produced by such organisms. In our work we investigated the biosynthetic potential of 13 industrially important strains of the Bacillus subtilis complex by mass spectrometric methodology. Typing of these organisms was performed with MALDI-TOF mass spectrometry followed by comprehensive profiling of their bioactive peptide products. Volatiles were determined by gas chromatography-mass spectrometry. Representative products of the members of the B. subtilis complex investigated in detail were: the surfactin familiy (surfactins, lichenysins, pumilacidins); the iturin family (iturins, mycosubtilins and bacillomycins); plantazolicin and the dual lantibiotics lichenicidins, as well as a wide spectrum of volatiles, such as hydrocarbons (alkanes/alkenes), alcohols, ketones, sulfur-containing compounds and pyrazines. The subcomplexes of the B. subtilis organizational unit; (a) B. subtilis/Bacillus atrophaeus; (b) B. amyloliquefaciens/B. velezensis; (c) B. licheniformis, and (d) B. pumilus are equipped with specific sets of these compounds which are the basis for the evaluation of their biotechnological and agricultural usage. The 13 test strains were evaluated in field trials for growth promotion of potato and maize plants. All of the implemented strains showed efficient growth stimulation of these plants. The highest effects were obtained with B. velezensis, B. subtilis, and B. atrophaeus strains.

6.
Chembiochem ; 19(7): 744-753, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369464

RESUMO

Paenibacillus polymyxa strains are qualified for agro-biotechnological uses such as plant growth promotion and for biocontrol strategies against deleterious phytopathogenic competitors in the soil depending on their attractive arsenal of bioactive compounds. Moreover, they are potent producers of antibiotics for medical applications. To identify new products of such organisms, genome mining strategies in combination with mass spectrometry are the methods of choice. Herein, we performed such studies with the Paenibacillus strain E681. Bioinformatic evaluation of its genome sequence revealed four gene clusters A-D encoding nonribosomal peptide synthetases (NRPSs). Accordingly, four lipopeptide families were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Clusters A and D codify the well known fusaricidins and polymyxins. A yet-unknown lipoheptapeptide was discovered and structurally characterized by de novo sequencing by using MALDI-LIFT-TOF/TOF MS. It was designated as paenilipoheptin. From structure predictions we infer that the production of this agent is encoded by gene cluster C. Gene cluster B encodes the synthesis of tridecaptins, a family of open-chain lipotridecapeptides. Strain E681 produces new subspecies of such compounds (tridecaptins E) showing variations both in their fatty-acid part as well as in their peptide part.


Assuntos
Proteínas de Bactérias/genética , Lipopeptídeos/genética , Família Multigênica , Paenibacillus polymyxa/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Biologia Computacional , Mineração de Dados , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Depsipeptídeos/genética , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Biossíntese Peptídica , Polimixinas/biossíntese , Polimixinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Mass Spectrom ; 52(1): 7-15, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714901

RESUMO

Paenibacillus polymyxa are rhizobacteria with a high potential to produce natural compounds of biotechnological and medical interest. Main products of P. polymyxa are fusaricidins, a large family of antifungal lipopeptides with a 15-guanidino-3-hydroxypentadecanoic acid (GHPD) as fatty acid side chain. We use the P. polymyxa strain M-1 as a model organism for the exploration of the biosynthetic potential of these rhizobacteria. Using matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) about 40 new fusaricidins were detected which were fractionated by reversed-phase (rp) HPLC. Their structure was determined by MALDI-LIFT-TOF/TOF fragment analysis. The dominant fragment in the product ion spectra of fusaricidins appeared at m/z 256.3, 284.3 and 312.4, respectively, indicating variations in their fatty acid part. Two new subfamilies of fusaricidins were introduced which contain guanidino-3-hydroxyhepta- and nonadecanoic acid as fatty acid constituents. Apparently, the end-standing guanidine group is not modified as shown by direct infusion nano-electrospray ionization mass spectrometry (nano-ESI MS). The results of this study suggest that advanced mass spectrometry is the method of choice for investigating natural compounds of unusual diversity, like fusaricidins. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Proteínas de Bactérias/análise , Lipopeptídeos/análise , Oligopeptídeos/análise , Paenibacillus polymyxa/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
J Bacteriol ; 196(10): 1842-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610713

RESUMO

Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization-time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon.


Assuntos
Antibacterianos/metabolismo , Bacillus/metabolismo , Bacteriocinas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus/genética , Bacteriocinas/química , Bacteriocinas/genética , Técnicas Bacteriológicas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA