Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 288(36): 25880-25894, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23864656

RESUMO

The ATP synthase (F(O)F1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γε and the stator ab2α3ß3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled F(O)F1 complexes by affinity chromatography with the use of mutants synthesizing different sets of F(O)F1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that F(O)F1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H(+)-translocating unit as intermediate product. Surprisingly, during the biogenesis of F(O)F1, F1 subunit δ is the key player in generating stable F(O). Subunit δ serves as clamp between ab2 and c10α3ß3γε and guarantees that the open H(+) channel is concomitantly assembled within coupled F(O)F1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H(+)-translocating enzymes.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Subunidades Proteicas/biossíntese , ATPases Translocadoras de Prótons/biossíntese , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
2.
J Biol Chem ; 288(34): 24465-79, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23846684

RESUMO

FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-ß, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/ß cleft, with bI close to subunit α, whereas bII is proximal to subunit ß. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-ß, α-bI-bII-ß, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
3.
J Biol Chem ; 281(14): 9641-9, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16354672

RESUMO

P-type ATPases are ubiquitously abundant enzymes involved in active transport of charged residues across biological membranes. The KdpB subunit of the prokaryotic Kdp-ATPase (KdpFABC complex) shares characteristic regions of homology with class II-IV P-type ATPases and has been shown previously to be misgrouped as a class IA P-type ATPase. Here, we present the NMR structure of the AMP-PNP-bound nucleotide binding domain KdpBN of the Escherichia coli Kdp-ATPase at high resolution. The aromatic moiety of the nucleotide is clipped into the binding pocket by Phe(377) and Lys(395) via a pi-pi stacking and a cation-pi interaction, respectively. Charged residues at the outer rim of the binding pocket (Arg(317), Arg(382), Asp(399), and Glu(348)) stabilize and direct the triphosphate group via electrostatic attraction and repulsion toward the phosphorylation domain. The nucleotide binding mode was corroborated by the replacement of critical residues. The conservative mutation F377Y produced a high residual nucleotide binding capacity, whereas replacement by alanine resulted in low nucleotide binding capacities and a considerable loss of ATPase activity. Similarly, mutation K395A resulted in loss of ATPase activity and nucleotide binding affinity, even though the protein was properly folded. We present a schematic model of the nucleotide binding mode that allows for both high selectivity and a low nucleotide binding constant, necessary for the fast and effective turnover rate realized in the reaction cycle of the Kdp-ATPase.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Potássio/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte de Íons/fisiologia , Modelos Químicos , Mutação , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
4.
FEBS Lett ; 543(1-3): 31-6, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12753900

RESUMO

The Methanocaldococcus jannaschii (formerly Methanococcus jannaschii) protein Mj0968 has been reported to represent a soluble P-type ATPase [Ogawa et al., FEBS Lett. 471 (2000) 99-102]. In this study, we report that the heterologously expressed Mj0968-His(10) protein exhibits high rates of phosphatase activity, whereas only very low ATPase activity was measured. Replacement of the aspartate residue in the DSAGT motif (D7A), which becomes phosphorylated during the reaction cycle of P-type ATPases, does not affect the V(max), but only the K(M) of the reaction. Labeling studies with [gamma-(32)P]ATP and [alpha-(32)P]ATP revealed that the previously reported labeling experiments [Ogawa et al., 2000] do not necessarily show phosphorylation of Mj0968, but rather point to ATP binding. Binding studies with trinitrophenyl adenosine nucleotides showed low apparent K(d) values for those molecules. These results provide evidence that the native function of Mj0968 seems to be that of a phosphatase, rather than that of an ATP-hydrolyzing enzyme.


Assuntos
Adenosina Trifosfatases/metabolismo , Mathanococcus/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Nucleotídeos de Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , Cinética , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Trinitrobenzenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA