Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Pharmacol Toxicol Methods ; 127: 107507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636673

RESUMO

The Health and Environmental Sciences Institute (HESI) Cardiac Safety Committee designed and created a publicly accessible database with an initial set of 128 pharmacologically defined pharmaceutical agents, many with known cardiotoxic properties. The database includes specific information about each compound that could be useful in evaluating hypotheses around mechanisms of drug-induced cardiac toxicity or for development of novel cardiovascular safety assays. Data on each of the compounds was obtained from published literature and online sources (e.g., DrugBank.ca and International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY) and was curated by 10 subject matter experts. The database includes information such as compound name, pharmacological mode of action, characterized cardiac mode of action, type of cardiac toxicity, known clinical cardiac toxicity profile, animal models used to evaluate the cardiotoxicity profile, routes of administration, and toxicokinetic parameters (i.e., Cmax). Data from both nonclinical and clinical studies are included for each compound. The user-friendly web interface allows for multiple approaches to search the database and is also intended to provide a means for the submission of new data/compounds from relevant users. This will ensure that the database is constantly updated and remains current. Such a data repository will not only aid the HESI working groups in defining drugs for use in any future studies, but safety scientists can also use the database as a vehicle of support for broader cardiovascular safety studies or exploring mechanisms of toxicity associated with certain pharmacological modes of action.


Assuntos
Cardiotoxicidade , Bases de Dados de Produtos Farmacêuticos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Cardiotoxicidade/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Avaliação Pré-Clínica de Medicamentos/métodos , Bases de Dados Factuais , Preparações Farmacêuticas
2.
J Appl Toxicol ; 42(9): 1477-1490, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199358

RESUMO

Cardiotoxicity is a serious adverse effect of an anticancer drug, doxorubicin (DOX), which can occur within a year or decades after completion of therapy. The present study was designed to address a knowledge gap concerning a lack of circulating biomarkers capable of predicting the risk of cardiotoxicity induced by DOX. Profiling of 2083 microRNAs (miRNAs) in mouse plasma revealed 81 differentially expressed miRNAs 1 week after 6, 9, 12, 18, or 24 mg/kg total cumulative DOX doses (early-onset model) or saline (SAL). Among these, the expression of seven miRNAs was altered prior to the onset of myocardial injury at 12 mg/kg and higher cumulative doses. The expression of only miR-34a-5p was significantly (false discovery rate [FDR] < 0.1) elevated at all total cumulative doses compared with concurrent SAL-treated controls and showed a statistically significant dose-related response. The trend in plasma miR-34a-5p expression levels during DOX exposures also correlated with a significant dose-related increase in cardiac expression of miR-34a-5p in these mice. Administration of a cardioprotective drug, dexrazoxane, to mice before DOX treatment, significantly mitigated miR-34a-5p expression in both plasma and heart in conjunction with attenuation of cardiac pathology. This association between plasma and heart may suggest miR-34a-5p as a potential early circulating marker of early-onset DOX cardiotoxicity. In addition, higher expression of miR-34a-5p (FDR < 0.1) in plasma and heart compared with SAL-treated controls 24 weeks after 24 mg/kg total cumulative DOX dose, when cardiac function was altered in our recently established delayed-onset cardiotoxicity model, indicated its potential as an early biomarker of delayed-onset cardiotoxicity.


Assuntos
Cardiotoxicidade , MicroRNAs , Animais , Biomarcadores , Doxorrubicina/toxicidade , Coração , Camundongos , MicroRNAs/metabolismo
3.
Cardiooncology ; 5: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32154013

RESUMO

The search for new chemical entities which are clinically effective and do not adversely affect the cardiovascular system is an ongoing objective. In vivo studies designed to detect potential drug-induced cardiovascular toxicity typically utilize both rodent and non-rodent species. An important component of such studies includes the microscopic evaluation of tissues for histopathologic changes. A factor which could potentially complicate this type of evaluation relates to the potential for laboratory animals to develop natural or spontaneous pathological cardiovascular lesions. Some types of these naturally occurring alterations are similar to those induced by chemical compounds and thus could confound accurate interpretation. Accurate morphologic analysis becomes contingent upon the ability to distinguish spontaneous cardiovascular changes from actual drug-induced lesions. A summary of some of the more frequently reported spontaneous cardiovascular alterations in commonly-used laboratory animals is presented below. Special emphasis is given to the spectrum of spontaneous background myocardial pathology that might be encountered during preclinical studies conducted to identify potential cardiotoxic actions of anticancer agents.

4.
Toxicol Appl Pharmacol ; 363: 164-173, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30517846

RESUMO

Cardiotoxicity is a serious adverse effect of doxorubicin (DOX) treatment in cancer patients. Currently, there is a lack of sensitive biomarkers to predict the risk of DOX-induced cardiotoxicity. Using SOMAmer-based proteomic technology, 1129 proteins were profiled to identify potential early biomarkers of cardiotoxicity in plasma from male B6C3F1 mice given a weekly intravenous dose of 3 mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice received the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg; intraperitoneal) 30 min before a weekly DOX or SAL dose. Proteomic analysis in plasma collected a week after the last dose showed a significant ≥1.2-fold change in level of 18 proteins in DOX-treated mice compared to SAL-treated counterparts during 8-week exposure. Of these, neurogenic locus notch homolog protein 1 (NOTCH1), von Willebrand factor (vWF), mitochondrial glutamate carrier 2, Wnt inhibitory factor 1, legumain, and mannan-binding lectin serine protease 1 were increased in plasma at 6 mg/kg cumulative DOX dose, prior to the release of myocardial injury marker, cardiac troponin I at 12 mg/kg and higher cumulative doses. These six proteins also remained significantly elevated following myocardial injury or pathology at 24 mg/kg. Pretreatment of mice with DXZ significantly attenuated DOX-induced elevated levels of only NOTCH1 and vWF with mitigation of cardiotoxicity. This suggests NOTCH1 and vWF as candidate early biomarkers of DOX cardiotoxicity, which may help in addressing a clinically important question of identifying cancer patients at risk for cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/sangue , Doxorrubicina/toxicidade , Administração Intravenosa , Animais , Biomarcadores/sangue , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Dexrazoxano/administração & dosagem , Doxorrubicina/administração & dosagem , Coração/efeitos dos fármacos , Masculino , Camundongos , Miocárdio/patologia , Substâncias Protetoras/administração & dosagem , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteômica , Receptor Notch1/sangue , Medição de Risco/métodos , Fator de von Willebrand/análise
6.
Toxicol Appl Pharmacol ; 310: 159-174, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644598

RESUMO

Sex is a risk factor for development of cardiotoxicity, induced by the anti-cancer drug, doxorubicin (DOX), in humans. To explore potential mechanisms underlying differential susceptibility to DOX between sexes, 8-week old male and female B6C3F1 mice were dosed with 3mg/kg body weight DOX or an equivalent volume of saline via tail vein once a week for 6, 7, 8, and 9 consecutive weeks, resulting in 18, 21, 24, and 27mg/kg cumulative DOX doses, respectively. At necropsy, one week after each consecutive final dose, the extent of myocardial injury was greater in male mice compared to females as indicated by higher plasma concentrations of cardiac troponin T at all cumulative DOX doses with statistically significant differences between sexes at the 21 and 24mg/kg cumulative doses. A greater susceptibility to DOX in male mice was further confirmed by the presence of cytoplasmic vacuolization in cardiomyocytes, with left atrium being more vulnerable to DOX cardiotoxicity. The number of TUNEL-positive cardiomyocytes was mostly higher in DOX-treated male mice compared to female counterparts, showing a statistically significant sex-related difference only in left atrium at 21mg/kg cumulative dose. DOX-treated male mice also had an increased number of γ-H2A.X-positive (measure of DNA double-strand breaks) cardiomyocytes compared to female counterparts with a significant sex effect in the ventricle at 27mg/kg cumulative dose and right atrium at 21 and 27mg/kg cumulative doses. This newly established mouse model provides a means to identify biomarkers and access potential mechanisms underlying sex-related differences in DOX-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Coração/efeitos dos fármacos , Fatores Sexuais , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
7.
Toxicol Appl Pharmacol ; 295: 68-84, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873546

RESUMO

Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.


Assuntos
Antineoplásicos/farmacologia , Cardiotônicos/farmacologia , Dexrazoxano/farmacologia , Doxorrubicina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Biomarcadores , Relação Dose-Resposta a Droga , Metabolismo Energético/genética , Expressão Gênica , Ontologia Genética , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/genética , Reação em Cadeia da Polimerase em Tempo Real , Troponina T/biossíntese
8.
Pharmacol Res Perspect ; 2(1): e00015, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505575

RESUMO

BACKGROUND: Imatinib (Imb) is a tyrosine kinase inhibitor with cardiotoxic activity (decreases in left ventricular function and congestive heart failure) in patients. Currently, clinical diagnosis of Imb cardiotoxicity relies primarily on evaluation of left ventricular function, Imb also induces cardiac lesions in rats. AIMS: This study, in rats, sought to determine whether monitoring biochemical markers would be a sensitive means to detect Imb-induced changes in cardiomyocyte morphology. MATERIALS AND METHODS: Groups of male Sprague-Dawley rats were dosed orally with 50, 100, 200 mg kg(-1) Imb or water daily for 28 days. Tissues and blood samples were collected 24 h after the last dosing. Cardiac biomarkers such as cardiac troponin I (cTnI), cardiac troponin T (cTnT), and fatty acid binding protein 3 (FABP3) were monitored by the Erenna, Elecsys, and Meso Scale immunoassay systems. RESULTS: Imb caused microscopic myocardial lesions (myofibrillar loss, cytoplasmic vacuolization, and necrosis) at all doses as determined by unbiased histopathology analysis. The severity of the alterations was dose-related with mean lesion scores (based on a scale of 0-3) of 1.2 (50 mg kg(-1)), 2.1 (100 mg kg(-1)) and 2.9 (200 mg kg(-1)). However, the increases in cTnI, cTnT, and FABP3 levels were noted primarily in high-dose Imb treated animals. DISCUSSION AND CONCLUSION: The occurrence of myocardial alterations in animals without consistent changes in cardiac troponin and FABP3 concentrations raises questions regarding the utility of these biomarkers as early indicators of Imb-induced cardiotoxicity. Due to limited numbers of animals the reasons for this discrepancy could not be determined.

9.
Toxicol Appl Pharmacol ; 281(2): 221-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25448438

RESUMO

Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F1 mice were injected intravenously with 3mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8weeks, resulting in cumulative DOX doses of 6, 9, 12, 18, and 24mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Animais , Apoptose/genética , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Cardiopatias/sangue , Cardiopatias/patologia , Histonas/metabolismo , Masculino , Camundongos , Miocárdio/patologia , Fatores de Tempo , Troponina T/sangue
10.
Toxicol Pathol ; 42(2): 361-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23531790

RESUMO

Clinically, girls appear to be more sensitive than boys to the cardiotoxic effects of doxorubicin, whereas the opposite may be true for adults. To identify and characterize potential sex-related differences, adult male and female spontaneously hypertensive rats (SHR; some ovariectomized [OVX]) received 1 mg/kg of doxorubicin or saline iv weekly for 9, 10, or 12 weeks. Weight gain was slower in treated males. Serum concentrations of cholesterol and triglycerides increased and those of albumin decreased in both sexes, but changes were more pronounced in treated males. Treated males had significantly more severe cardiomyopathy scores and higher serum levels of cTnT than females. The increased cardiotoxicity was accompanied by higher numbers of cardiac mast cells (MCs) and percentage of cardiac MCs undergoing degranulation. Doxorubicin-treated OVX animals had significantly increased numbers of cardiac MCs, more severe myocardial lesions, and elevated serum concentrations of cTnT compared to doxorubicin-treated normal female SHR. The severity of cardiac lesions in the OVX female was similar to that observed in doxorubicin-treated males. This study demonstrated the presence of sex-related differences in the cardiotoxic effects elicited by doxorubicin and identified variations in the level of cardiac MC activity as a factor which could possibly contribute to the male-female dissimilarity.


Assuntos
Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Nefropatias/induzido quimicamente , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Animais , Análise Química do Sangue , Cardiomiopatias/sangue , Cardiomiopatias/patologia , Feminino , Coração/efeitos dos fármacos , Rim/citologia , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/sangue , Nefropatias/patologia , Masculino , Ovariectomia , Ratos , Ratos Endogâmicos SHR , Fatores Sexuais
11.
Toxicol Pathol ; 42(5): 888-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24129761

RESUMO

Cardiac troponins serve as serum biomarkers of myocardial injury. The current study examined the influence of age on serum concentrations of cardiac troponin I (cTnI). An ultrasensitive immunoassay was used to monitor cTnI concentrations in Sprague-Dawley (SD) rats and Erythrocebus patas monkeys of different ages. The mean cTnI concentrations were highest in 10-day-old rats compared to 25-, 40-, and 80-day-old SD rats. Cardiomyocyte remodeling was apparent in hearts from 10-day-old SD rats as evident by hypercellularity, irregularly shaped nuclei, and moderate numbers of myocytes undergoing mitosis and apoptosis. The mean concentration of cTnI in 5 newborn monkeys was considerably higher than that of three 1-year-old monkeys. Evidence of cardiomyocyte remodeling was also observed in these newborn hearts (loss of myofibrils and cytoplasmic vacuolation). Commercial animal serum samples were also analyzed. The concentrations of cTnI detected in fetal equine and porcine serum were considerably higher than that found in adult equine and porcine serum samples Likewise, fetal bovine serum had higher cTnI concentrations (>2,400 pg/ml) than did adult caprine and laprine samples (2.5-2.7 pg/ml). The present study found age-related differences in cTnI concentrations, with higher levels occurring at younger ages. This effect was consistent across several animal species.


Assuntos
Fatores Etários , Biomarcadores/sangue , Troponina I/sangue , Animais , Bovinos , Erythrocebus patas , Feminino , Traumatismos Cardíacos/sangue , Cavalos , Imunoensaio , Masculino , Miocárdio/metabolismo , Miofibrilas/metabolismo , Ratos , Ratos Sprague-Dawley , Suínos
13.
PLoS One ; 8(8): e70575, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940596

RESUMO

Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of mitochondrially-directed agents to mitigate oxidative stress-induced cardiotoxicity. Our findings also emphasize the novel role of specific protein oxidation markers and autophagic mechanisms for cardioprotection.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Dexrazoxano/uso terapêutico , Compostos Organofosforados/uso terapêutico , Piperidinas/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR
14.
Toxicol Appl Pharmacol ; 266(1): 109-21, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23142469

RESUMO

Serum levels of cardiac troponins serve as biomarkers of myocardial injury. However, troponins are released into the serum only after damage to cardiac tissue has occurred. Here, we report development of a mouse model of doxorubicin (DOX)-induced chronic cardiotoxicity to aid in the identification of predictive biomarkers of early events of cardiac tissue injury. Male B6C3F(1) mice were administered intravenous DOX at 3mg/kg body weight, or an equivalent volume of saline, once a week for 4, 6, 8, 10, 12, and 14weeks, resulting in cumulative DOX doses of 12, 18, 24, 30, 36, and 42mg/kg, respectively. Mice were sacrificed a week following the last dose. A significant reduction in body weight gain was observed in mice following exposure to a weekly DOX dose for 1week and longer compared to saline-treated controls. DOX treatment also resulted in declines in red blood cell count, hemoglobin level, and hematocrit compared to saline-treated controls after the 2nd weekly dose until the 8th and 9th doses, followed by a modest recovery. All DOX-treated mice had significant elevations in cardiac troponin T concentrations in plasma compared to saline-treated controls, indicating cardiac tissue injury. Also, a dose-related increase in the severity of cardiac lesions was seen in mice exposed to 24mg/kg DOX and higher cumulative doses. Mice treated with cumulative DOX doses of 30mg/kg and higher showed a significant decline in heart rate, suggesting drug-induced cardiac dysfunction. Altogether, these findings demonstrate the development of DOX-induced chronic cardiotoxicity in B6C3F(1) mice.


Assuntos
Cardiotoxinas/toxicidade , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Doença Crônica , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Coração/fisiologia , Cardiopatias/sangue , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Especificidade da Espécie
15.
Toxicol Pathol ; 39(7): 1091-106, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937741

RESUMO

Cardiotoxicity was an unanticipated side effect elicited by the clinical use of imatinib (Imb). This toxicity has been examined in only a limited number of experimental studies. The present study sought, by a variety of approaches, to identify important characteristics of Imb-induced cardiac alterations. Male spontaneously hypertensive rats (SHRs) received oral doses of 10, 30, or 50 mg/kg Imb or water daily for 10 d. Cardiac lesions, detected at all doses, were characterized by cytoplasmic vacuolization and myofibrillar loss. In a second experiment, cardiac lesions were found in Sprague Dawley (SD) and SHR rats given 50 or 100 mg/kg Imb for 14 d. Mean cardiac lesion scores and serum levels of cardiac troponin I were higher in SHRs than in SD rats. Imb induced myocyte death by necrosis, autophagy, and apoptosis. Dose-related increases in cardiac expression were observed for several genes associated with endoplasmic reticulum stress response, protein folding, and vascular development and remodeling. Imb caused alterations in isolated myocytes (myofibrillar loss, highly disrupted and disorganized sarcomeric α-actinin, apoptosis, and increased lactate dehydrogenase release) at low concentrations (5 mM). The authors conclude that Imb exerts cardiotoxic effects that are manifest through a complex pattern of cellular alterations, the severity of which can be influenced by arterial blood pressure.


Assuntos
Cardiotoxinas/toxicidade , Cardiopatias/induzido quimicamente , Piperazinas/toxicidade , Pirimidinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzamidas , Cardiotoxinas/administração & dosagem , Cardiopatias/metabolismo , Cardiopatias/patologia , Mesilato de Imatinib , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Miocárdio/química , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Razoxano , Sarcômeros/efeitos dos fármacos , Troponina/metabolismo , Aumento de Peso
16.
Toxicol Pathol ; 39(4): 653-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21558468

RESUMO

Cardiac troponins have proved to be reliable blood biomarkers for identifying a variety of myocardial alterations in humans and animals. Recently, an ultrasensitive cTnI assay (Erenna IA) has been used to demonstrate increases in baseline cTnI resulting from drug-induced myocardial injury in rats, dogs, and monkeys, as well as to document baseline cTnI ranges in Sprague-Dawley (SD) rats. The present study was initiated to use the Erenna cTnI assay to further document baseline cTnI concentrations in normal control animals from multiple strains, including SD, Spontaneous Hypertensive (SHR), Wistar, Wistar-Kyoto (WKY), and Fisher strains. Baseline cTnI concentrations were quantified in all rats tested, and males had higher mean cTnI concentrations than females of the same strain. SHR males had the highest mean cTnI concentrations and the largest cTnI variability. Interestingly, cTnI concentrations increased in castrated SHR compared with unaltered male SHR, whereas cTnI concentrations decreased in ovariectomized SHR compared with unaltered female SHR. These results show significant differences in cTnI concentrations between strains, sexes, and noncardiac surgical alterations in control animals, and identify these as potential contributing factors to cTnI baseline variability that should be taken into account when using ultrasensitive cTnI as a biomarker to assess preclinical cardiotoxicity.


Assuntos
Animais de Laboratório/sangue , Biomarcadores/sangue , Imunoensaio/métodos , Troponina I/sangue , Animais , Feminino , Coração/efeitos dos fármacos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/patologia , Masculino , Orquiectomia , Ovariectomia , Ratos , Ratos Endogâmicos F344/sangue , Ratos Endogâmicos SHR/sangue , Ratos Endogâmicos WKY/sangue , Ratos Sprague-Dawley/sangue , Ratos Wistar/sangue , Fatores Sexuais
17.
Cancer Chemother Pharmacol ; 68(5): 1125-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21373894

RESUMO

PURPOSE: The iron chelator Dp44mT is a potent topoisomerase IIα inhibitor with novel anticancer activity. Doxorubicin (Dox), the current front-line therapy for breast cancer, induces a dose-limiting cardiotoxicity, in part through an iron-mediated pathway. We tested the hypothesis that Dp44mT can improve clinical outcomes of treatment with Dox by alleviating cardiotoxicity. METHODS: The general cardiac and renal toxicities induced by Dox were investigated in the presence and absence of Dp44mT. The iron chelating cardioprotectant Dexrazoxane (Drz), which is approved for this indication, was used as a positive control. In vitro studies were carried out with H9c2 rat cardiomyocytes and in vivo studies were performed using spontaneously hypertensive rats. RESULTS: Testing of the GI(50) profile of Dp44mT in the NCI-60 panel confirmed activity against breast cancer cells. An acute, toxic dose of Dox caused the predicted cellular and cardiac toxicities, such as cell death and DNA damage in vitro and elevated cardiac troponin T levels, tissue damage, and apoptosis in vivo. Dp44mT alone caused insignificant changes in hematological and biochemical indices in rats, indicating that Dp44mT is not significantly cardiotoxic as a single agent. In contrast to Drz, Dp44mT failed to mitigate Dox-induced cardiotoxicity in vivo. CONCLUSIONS: We conclude that although Dp44mT is a potent iron chelator, it is unlikely to be an appropriate cardioprotectant against Dox-induced toxicity. However, it should continue to be evaluated as a potential anticancer agent as it has a novel mechanism for inhibiting the growth of a broad range of malignant cell types while exhibiting very low intrinsic toxicity to healthy tissues.


Assuntos
Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/toxicidade , Coração/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Tiossemicarbazonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Masculino , Ratos , Ratos Endogâmicos SHR , Troponina T/metabolismo
18.
Cancer Chemother Pharmacol ; 66(2): 303-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19915844

RESUMO

PURPOSE: The antineoplastic anthracycline doxorubicin can induce a dose-dependent cardiomyopathy that limits the total cumulative dose prescribed to cancer patients. In both preclinical and clinical studies, pretreatment with dexrazoxane, an intracellular iron chelator, partially protects against anthracycline-induced cardiomyopathy. To identify potential additional cardioprotective treatment strategies, we investigated early doxorubicin-induced changes in cardiac gene expression. METHODS: Spontaneously hypertensive male rats (n = 47) received weekly intravenous injections of doxorubicin (3 mg/kg) or saline 30 min after pretreatment with dexrazoxane (50 mg/kg) or saline by intraperitoneal injection. Cardiac samples were analyzed 24 h after the first (n = 20), second (n = 13), or third (n = 14) intravenous injection on days 1, 8, or 15 of the study, respectively. RESULTS: Rats receiving three doses of doxorubicin had minimal myocardial alterations that were attenuated by dexrazoxane. Cardiac expression levels of genes associated with the Nrf2-mediated stress response were increased after a single dose of doxorubicin, but not affected by cardioprotectant pretreatment. In contrast, an early repressive effect of doxorubicin on transcript levels of genes associated with mitochondrial function was attenuated by dexrazoxane pretreatment. Dexrazoxane had little effect on gene expression by itself. CONCLUSIONS: Genomic analysis provided further evidence that mitochondria are the primary target of doxorubicin-induced oxidative damage that leads to cardiomyopathy and the primary site of cardioprotective action by dexrazoxane. Additional strategies that prevent the formation of oxygen radicals by doxorubicin in mitochondria may provide increased cardioprotection.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Cardiopatias , Miocárdio , Animais , Masculino , Ratos , Antibióticos Antineoplásicos/toxicidade , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Doxorrubicina/toxicidade , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Endogâmicos SHR , Razoxano/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Troponina T/sangue , Troponina T/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética
19.
Am Heart J ; 158(1): 21-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19540388

RESUMO

Cardiac troponins (cTns) are established biomarkers of ischemic heart disease in humans. However, their value as biomarkers of cardiac injury from causes other than ischemic heart disease is now being explored, particularly in drug development. In a workshop sponsored by the Cardiac Troponin Biomarker Working Group of the Health and Environmental Sciences Institute, preclinical, clinical, and regulatory scientists discussed the application of cTns in their respective environments, issues in translating the preclinical application of cTn to clinical studies, and gaps in our understanding of cTn biology and pathobiology. Evidence indicates that cTns are sensitive and specific biomarkers of cardiac injury from varying causes in both animals and humans. Accordingly, monitoring cTns can help ensure patient safety during the clinical evaluation of new drugs. In addition, preclinical characterization of cardiac risk and cTns as biomarkers of that risk can guide relevant clinical application and interpretation. We summarize here the outcomes of the workshop which included consensus statements, recommendations for further research, and a proposal for a cross-disciplinary group of clinical, regulatory, and drug development scientists to collaborate in such research.


Assuntos
Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico , Troponina/sangue , Animais , Cardiomiopatias/sangue , Ensaios Clínicos como Assunto , Comportamento Cooperativo , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Educação , Humanos , Comunicação Interdisciplinar , Monitorização Fisiológica , Valor Preditivo dos Testes , Medição de Risco
20.
Toxicol Pathol ; 36(6): 827-39, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18776163

RESUMO

Histopathological and immunohistochemical studies were conducted to characterize vascular injuries in rats treated with phosphodiesterase (PDE) IV inhibitors SCH 351591 or SCH 534385. Sprague-Dawley rats were administered PDE IV inhibitors by gavage at a range of doses and times. The two PDE IV inhibitors induced comparable levels of vascular injury, primarily in the mesentery and to a lesser extent in the pancreas, kidney, liver, small intestine, and stomach. Mesenteric vascular changes occurred as early as one hour, progressively developed over twenty-four to forty-eight hours, peaked at seventy-two hours, and gradually subsided from seven to nine days. The typical morphology of the vascular toxicity consisted of hemorrhage and necrosis of arterioles and arteries, microvascular injury, fibrin deposition, and perivascular inflammation of a variety of blood vessels. The incidence and severity of mesenteric vascular injury increased in a time- and dose-dependent manner in SCH 351591- or SCH 534385-treated rats. Mesenteric vascular injury was frequently associated with activation of mast cells (MC), endothelial cells (EC), and macrophages (MØ). Immunohistochemical studies showed increases in CD63 immunoreactivity of mesenteric MC and in nitrotyrosine immunoreactivity of mesenteric EC and MØ. The present study also provides a morphological and cellular basis for evaluating candidate biomarkers of drug-induced vascular injury.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Óxidos N-Cíclicos/toxicidade , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/toxicidade , Quinolinas/toxicidade , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/patologia , Animais , Imuno-Histoquímica , Intestino Delgado/irrigação sanguínea , Intestino Delgado/patologia , Rim/irrigação sanguínea , Rim/patologia , Artérias Mesentéricas/patologia , Pâncreas/irrigação sanguínea , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Estômago/irrigação sanguínea , Estômago/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA