Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 9: 2236-2247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202692

RESUMO

Chloride-capped silver nanoparticles (Cl-AgNPs) allow for high-intensity surface-enhanced Raman scattering (SERS) spectra of cationic molecules to be obtained (even at nanomolar concentration) and may also play a key role in understanding some fundamental principles behind SERS. In this study, we describe a fast (<10 min) and simple protocol for obtaining highly SERS-active colloidal silver nanoparticles (AgNPs) with a mean diameter of 36 nm by photoconversion from AgCl precursor microparticles in the absence of any organic reducing or capping agent. The resulting AgNPs are already SERS-activated by the Cl- ions chemisorbed onto the metal surface where the chloride concentration in the colloidal solution is 10-2 M. Consequently, the enhanced SERS spectra of cationic dyes (e.g., crystal violet or 9-aminoacridine) demonstrate the advantages of Cl-AgNPs compared to the as-synthesized AgNPs obtained by standard Ag+ reduction with hydroxylamine (hya-AgNPS) or citrate (cit-AgNPs). The results of SERS experiments on anionic and cationic test molecules comparing Cl-AgNPs, hya-AgNPs and cit-AgNPs colloids activated with different amounts of Cl- and/or cations such as Ag+, Mg2+ or Ca2+ can be explained within the understanding of the adatom model - the chemisorption of cationic analytes onto the metal surface is mediated by the Cl- ions, whereas ions like Ag+, Mg2+ or Ca2+ mediate the electronic coupling of anionic species to the silver metal surface. Moreover, the SERS effect is switched on only after the electronic coupling of the adsorbate to the silver surface at SERS-active sites. The experiments presented in this study highlight the SERS-activating role played by ions such as Cl-, Ag+, Mg2+ or Ca2+, which is a process that seems to prevail over the Raman enhancement due to nanoparticle aggregation.

2.
Langmuir ; 32(16): 3867-79, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26974267

RESUMO

Aqueous microgels that respond orthogonally to external temperature and light stimuli and to a combination of both stimuli were developed. N-Vinylcaprolactam (VCL) was copolymerized with small feed amounts (<5 mol %) of 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid (ABSA) and cross-linked with N,N'-methylenebis(acrylamide) (BIS) to synthesize monodisperse and colloidally stable P(VCL-BIS-ABSA) microgels. The volume phase transition information on the microgels under both orthogonal and combined application of temperature and light stimuli was investigated in situ by dynamic light scattering (DLS) instrument. Modeling of this information by the Flory-Rehner theory describes and aids the preliminary understanding of the main features in the volume phase transition of these photoresponsive microgels. Interestingly, the microgels rapidly deswell upon UV irradiation (λ = 365 nm), even as the trans-ABSA pendant groups are converted to the more polar cis state. The variation in the content of the pendant azobenzene groups in the microgels allows for reversible modulation of the phototriggered volume change. We propose that the approach of the sulfonic acid groups of cis-ABSA toward the polymer backbone causes the disruption of hydrogen bonding interactions between water molecules and the carbonyl groups of VCL.

3.
Artigo em Inglês | MEDLINE | ID: mdl-22484262

RESUMO

The development of surface-enhanced Raman scattering (SERS) as a prospective analytical methodology for detection of metal ions was shown in recent years by several studies on metal complexes. In this work, 1-(2-pyridylazo)-2-naphthol (PAN) and its Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II) complexes were studied by FTIR, FT-Raman and surface enhanced Raman spectroscopies. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations were performed using the hybrid B3LYP exchange-correlation functional for the PAN molecule and its bidentate complexes. The calculated MEP distributions indicated the atoms with highest electronegativity, the adsorption to the silver surface occurring through these atoms. Based on experimental and theoretical data we were able to identify unique and representative features, useful for the identification of each PAN-metal complex.


Assuntos
Complexos de Coordenação/química , Naftóis/química , Metais/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
4.
Anal Bioanal Chem ; 400(3): 815-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21359570

RESUMO

A new, simple, and effective approach for multianalyte sequential surface-enhanced Raman scattering (SERS) detection in a flow cell is reported. The silver substrate was prepared in situ by laser-induced photochemical synthesis. By focusing the laser on the 320 µm inner diameter glass capillary at 0.5 ml/min continuous flow of 1 mM silver nitrate and 10 mM sodium citrate mixture, a SERS active silver spot on the inner wall of the glass capillary was prepared in a few seconds. The test analytes, dacarbazine, 4-(2-pyridylazo)resorcinol (PAR) complex with Cu(II), and amoxicillin, were sequentially injected into the flow cell. Each analyte was adsorbed to the silver surface, enabling the recording of high intensity SERS spectra even at 2 s integration times, followed by desorption from the silver surface and being washed away from the capillary. Before and after each analyte passed the detection window, citrate background spectra were recorded, and thus, no "memory effects" perturbed the SERS detection. A good reproducibility of the SERS spectra obtained under flow conditions was observed. The laser-induced photochemically synthesized silver substrate enables high Raman enhancement, is characterized by fast preparation with a high success rate, and represents a valuable alternative for silver colloids as SERS substrate in flow approaches.

5.
Artigo em Inglês | MEDLINE | ID: mdl-21420900

RESUMO

The surface-enhanced Raman scattering (SERS) spectra of Eriochrome Black T (EBT) and its Cu(II), Fe(III), Mn(II) and Pb(II) complexes were recorded using a hydroxylamine reduced silver colloid. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculation were performed at B3LYP/6-31G(d) level of theory for the EBT molecule and its Cu(EBT), Fe(EBT) and Mn(EBT) metal complexes. Differentiation between EBT complexes of Cu(II), Fe(III), Mn(II) and Pb(II) is shown by the SERS spectral features of each complex.


Assuntos
Compostos Azo/química , Quelantes/química , Metais/química , Modelos Moleculares , Teoria Quântica , Análise Espectral Raman/métodos , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA