Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37131695

RESUMO

Objective: To investigate the effects of metformin on intestinal carbohydrate metabolism in vivo. Method: Male mice preconditioned with a high-fat, high-sucrose diet were treated orally with metformin or a control solution for two weeks. Fructose metabolism, glucose production from fructose, and production of other fructose-derived metabolites were assessed using stably labeled fructose as a tracer. Results: Metformin treatment decreased intestinal glucose levels and reduced incorporation of fructose-derived metabolites into glucose. This was associated with decreased intestinal fructose metabolism as indicated by decreased enterocyte F1P levels and diminished labeling of fructose-derived metabolites. Metformin also reduced fructose delivery to the liver. Proteomic analysis revealed that metformin coordinately down-regulated proteins involved carbohydrate metabolism including those involved in fructolysis and glucose production within intestinal tissue. Conclusion: Metformin reduces intestinal fructose metabolism, and this is associated with broad-based changes in intestinal enzyme and protein levels involved in sugar metabolism indicating that metformin's effects on sugar metabolism are pleiotropic.

2.
Transl Res ; 255: 140-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563959

RESUMO

While natriuretic peptides (NPs) are primarily known for their renal and cardiovascular actions, NPs stimulate lipolysis in adipocytes and induce a thermogenic program in white adipose tissue (WAT) that resembles brown fat. The biologic effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which binds and degrades NPs. Knockout (KO) of NPRC protects against diet induced obesity and improves insulin sensitivity in obese mice. To determine if pharmacologic blockade of NPRC enhanced the beneficial metabolic actions of NPs in type 2 diabetes, we blocked NP clearance in a mouse model of type 2 diabetes using the specific NPRC ligand ANP(4-23). We found that treatment with ANP(4-23) caused a significant decrease in body weight by increasing energy expenditure and reducing fat mass without a change in lean body mass. The decrease in fat mass was associated with a significant improvement in insulin sensitivity and reduced serum insulin levels. These beneficial effects were accompanied by a decrease in infiltrating macrophages in adipose tissue, and reduced expression of inflammatory markers in both serum and WAT. These data suggest that inhibiting NP clearance may be an effective pharmacologic approach to promote weight loss and enhance insulin sensitivity in type 2 diabetes. Optimizing the therapeutic approach may lead to useful therapies for obesity and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Peptídeos Natriuréticos/metabolismo , Peptídeos Natriuréticos/uso terapêutico , Obesidade/metabolismo , Redução de Peso
3.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413406

RESUMO

Carbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.


Assuntos
Glucose , Fatores de Transcrição , Animais , Humanos , Camundongos , Glucose/metabolismo , Homeostase , Lipídeos , Fatores de Transcrição/metabolismo
4.
FASEB J ; 36(10): e22546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106538

RESUMO

The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.


Assuntos
Microbioma Gastrointestinal , Ácido Succínico , Animais , Ciclo do Ácido Cítrico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos , Camundongos , Succinatos/metabolismo , Ácido Succínico/metabolismo
6.
J Biol Chem ; 298(10): 102401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988648

RESUMO

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Assuntos
Diabetes Mellitus Tipo 2 , Lipogênese , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Camundongos , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Malonil Coenzima A/metabolismo , Camundongos Obesos , Palmitatos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Nat Commun ; 13(1): 4423, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908073

RESUMO

Preservation and expansion of ß-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPß) is a nuclear effector of hyperglycemic stress occurring in ß-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPß is necessary for adaptive ß-cell expansion in response to metabolic challenges. Conversely, chronic excessive ß-cell-specific overexpression of ChREBPß results in loss of ß-cell identity, apoptosis, loss of ß-cell mass, and diabetes. Furthermore, ß-cell "glucolipotoxicity" can be prevented by deletion of ChREBPß. Moreover, ChREBPß-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human ß-cells. We conclude that ChREBPß, whether adaptive or maladaptive, is an important determinant of ß-cell fate and a potential target for the preservation of ß-cell mass in diabetes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Secretoras de Insulina , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Retroalimentação , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
J Nutr ; 152(11): 2534-2545, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774119

RESUMO

BACKGROUND: Prospective cohort studies have found a relation between sugar-sweetened beverage (SSB) consumption (sodas and fruit drinks) and dyslipidemia. There is limited evidence linking SSB consumption to emerging features of dyslipidemia, which can be characterized by variation in lipoprotein particle size, remnant-like particle (RLP), and apolipoprotein concentrations. OBJECTIVES: To examine the association between SSB consumption and plasma lipoprotein cholesterol, apolipoprotein, and lipoprotein particle size concentrations among US adults. METHODS: We examined participants from the Framingham Offspring Study (FOS; 1987-1995, n = 3047) and the Women's Health Study (1992, n = 26,218). Concentrations of plasma LDL cholesterol, apolipoprotein B (apoB), HDL cholesterol, apolipoprotein A1 (apoA1), triglyceride (TG), and non-HDL cholesterol, as well as total cholesterol:HDL cholesterol ratio and apoB:apoA1 ratio, were quantified in both cohorts; concentrations of apolipoprotein E, apolipoprotein C3, RLP-TG, and RLP cholesterol (RLP-C) were measured in the FOS only. Lipoprotein particle sizes were calculated from nuclear magnetic resonance signals for lipoprotein particle subclass concentrations (TG-rich lipoprotein particles [TRL-Ps]: very large, large, medium, small, and very small; LDL particles [LDL-Ps]: large, medium, and small; HDL particles [HDL-Ps]: large, medium, and small). SSB consumption was estimated from food frequency questionnaire data. We examined the associations between SSB consumption and all lipoprotein and apoprotein measures in linear regression models, adjusting for confounding factors such as lifestyle, diet, and traditional lipoprotein risk factors. RESULTS: SSB consumption was positively associated with LDL cholesterol, apoB, TG, RLP-TG, RLP-C, and non-HDL cholesterol concentrations and total cholesterol:HDL cholesterol and apoB:apoA1 ratios; and negatively associated with HDL cholesterol and apoA1 concentrations (P-trend range: <0.0001 to 0.008). After adjustment for traditional lipoprotein risk factors, SSB consumers had smaller LDL-P and HDL-P sizes; lower concentrations of large LDL-Ps and medium HDL-Ps; and higher concentrations of small LDL-Ps, small HDL-Ps, and large TRL-Ps (P-trend range: <0.0001 to 0.001). CONCLUSIONS: Higher SSB consumption was associated with multiple emerging features of dyslipidemia that have been linked to higher cardiometabolic risk in US adults.


Assuntos
Dislipidemias , Bebidas Adoçadas com Açúcar , Adulto , Feminino , Humanos , Apolipoproteínas , Apolipoproteínas B , Colesterol , HDL-Colesterol , LDL-Colesterol , Lipoproteínas , Tamanho da Partícula , Estudos Prospectivos , Triglicerídeos , Masculino
9.
Nutrients ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684643

RESUMO

The metabolic syndrome (MetS), defined as the co-occurrence of disorders including obesity, dyslipidemia, insulin resistance, and hepatic steatosis, has become increasingly prevalent in the world over recent decades. Dietary and other environmental factors interacting with genetic predisposition are likely contributors to this epidemic. Among the involved dietary factors, excessive fructose consumption may be a key contributor. When fructose is consumed in large amounts, it can quickly produce many of the features of MetS both in humans and mice. The mechanisms by which fructose contributes to metabolic disease and its potential interactions with genetic factors in these processes remain uncertain. Here, we generated a small F2 genetic cohort of male mice derived from crossing fructose-sensitive and -resistant mouse strains to investigate the interrelationships between fructose-induced metabolic phenotypes and to identify hepatic transcriptional pathways that associate with these phenotypes. Our analysis indicates that the hepatic transcriptional pathways associated with fructose-induced hypertriglyceridemia and hyperinsulinemia are distinct from those that associate with fructose-mediated changes in body weight and liver triglyceride. These results suggest that multiple independent mechanisms and pathways may contribute to different aspects of fructose-induced metabolic disease.


Assuntos
Frutose/efeitos adversos , Hiperinsulinismo/complicações , Hipertrigliceridemia/complicações , Fígado/metabolismo , Análise de Sistemas , Triglicerídeos/metabolismo , Animais , Estudos de Coortes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Haplótipos , Hiperinsulinismo/sangue , Hipertrigliceridemia/sangue , Insulina/sangue , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
10.
Cell Metab ; 33(12): 2329-2354, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34619074

RESUMO

Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.


Assuntos
Frutose , Doenças Metabólicas , Dieta , Frutose/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Obesidade/metabolismo
11.
Mol Metab ; 52: 101261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044180

RESUMO

BACKGROUND: A strong association of obesity and insulin resistance with increased circulating levels of branched-chain and aromatic amino acids and decreased glycine levels has been recognized in human subjects for decades. SCOPE OF REVIEW: More recently, human metabolomics and genetic studies have confirmed and expanded upon these observations, accompanied by a surge in preclinical studies that have identified mechanisms involved in the perturbation of amino acid homeostasis- how these events are connected to dysregulated glucose and lipid metabolism, and how elevations in branched-chain amino acids (BCAA) may participate in the development of insulin resistance, type 2 diabetes (T2D), and other cardiometabolic diseases and conditions. MAJOR CONCLUSIONS: In human cohorts, BCAA and related metabolites are now well established as among the strongest biomarkers of obesity, insulin resistance, T2D, and cardiovascular diseases. Lowering of BCAA and branched-chain ketoacid (BCKA) levels by feeding BCAA-restricted diet or by the activation of the rate-limiting enzyme in BCAA catabolism, branched-chain ketoacid dehydrogenase (BCKDH), in rodent models of obesity have clear salutary effects on glucose and lipid homeostasis, but BCAA restriction has more modest effects in short-term studies in human T2D subjects. Feeding of rats with diets enriched in sucrose or fructose result in the induction of the ChREBP transcription factor in the liver to increase expression of the BCKDH kinase (BDK) and suppress the expression of its phosphatase (PPM1K) resulting in the inactivation of BCKDH and activation of the key lipogenic enzyme ATP-citrate lyase (ACLY). These and other emergent links between BCAA, glucose, and lipid metabolism motivate ongoing studies of possible causal actions of BCAA and related metabolites in the development of cardiometabolic diseases.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Cetoácidos/metabolismo , Obesidade/complicações , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Aminoácidos de Cadeia Ramificada , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Cetoácidos/sangue , Lipogênese , Fígado/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C/metabolismo
12.
J Biol Chem ; 296: 100623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812993

RESUMO

Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP's cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Metabolismo dos Carboidratos , Glucose/metabolismo , Hexoses/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Mutação , Processamento de Proteína Pós-Traducional , Roedores
14.
Hepatol Commun ; 4(5): 670-680, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32363318

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous disease driven by genetic and environmental factors. MicroRNAs (miRNAs) serve as pleiotropic post-transcriptional regulators of cellular pathways. Although several miRNAs have been associated with NAFLD and fibrosis, there are limited studies in humans examining their differential association with pathogenic factors or histological features of NAFLD. We examined the differential relationships of five of the best-described circulating microRNAs (miR-34a, miR-122, miR-191, miR-192, and miR-200a) with histological features and pathogenic factors of NAFLD. A cross-sectional study was conducted to examine the relationship between relative levels of circulating microRNAs standardized by z-scores and histological features of NAFLD, common NAFLD genetic polymorphisms, and insulin resistance measured by the enhanced lipoprotein insulin resistance index in 132 subjects with biopsy-proven NAFLD. We found that miR-34a, miR-122, miR-192, miR-200a, but not miR-191, strongly correlate with fibrosis in NAFLD by increases of 0.20 to 0.40 SD (P < 0.005) with each stage of fibrosis. In multivariate analysis, miR-34a, miR-122, and miR-192 levels are independently associated with hepatic steatosis and fibrosis, but not lobular inflammation or ballooning degeneration, whereas miR-200a is only associated with fibrosis. Among the four miRNAs, miR-34a, miR-122, and miR-192 are associated with pathogenic factors of NAFLD, including insulin resistance measured by eLP-IR, patatin-like phospholipase domain containing 3 I148M, and transmembrane 6 superfamily 2 (TM6SF2) E167K polymorphisms. In contrast, miR-200a is only associated with the TM6SF2 E167K variant. Finally, miR-34a has the strongest predictive value for various stages of fibrosis, with C-statistic approximates-combined predictive score for miRNAs. Conclusion: miR-34a, miR-122, miR-192, and miR-200a demonstrate strong associations with NAFLD severity by histology, but differential associations with pathogenic factors.

15.
J Am Heart Assoc ; 9(5): e014083, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32098600

RESUMO

Background Limited data are available on the prospective relationship between beverage consumption and plasma lipid and lipoprotein concentrations. Two major sources of sugar in the US diet are sugar-sweetened beverages (SSBs) and 100% fruit juices. Low-calorie sweetened beverages are common replacements. Methods and Results Fasting plasma lipoprotein concentrations were measured in the FOS (Framingham Offspring Study) (1991-2014; N=3146) and Generation Three (2002-2001; N=3584) cohorts. Beverage intakes were estimated from food frequency questionnaires and grouped into 5 intake categories. Mixed-effect linear regression models were used to examine 4-year changes in lipoprotein measures, and Cox proportional hazard models were used to estimate hazard ratios for incident dyslipidemia, adjusting for potential confounding factors. We found that regular (>1 serving per day) versus low (<1 serving per month) SSB consumption was associated with a greater mean decrease in high-density lipoprotein cholesterol (ß±standard error -1.6±0.4 mg/dL; Ptrend<0.0001) and increase in triglyceride (ß±standard error: 4.4±2.2 mg/dL; Ptrend=0.003) concentrations. Long-term regular SSB consumers also had a higher incidence of high triglyceride (hazard ratio, 1.52; 95% CI, 1.03-2.25) compared with low consumers. Although recent regular low-calorie sweetened beverage consumers had a higher incidence of high non-high-density lipoprotein cholesterol (hazard ratio, 1.40; 95% CI, 1.17-1.69) and low-density lipoprotein cholesterol (hazard ratio, 1.27; 95% CI, 1.05-1.53) concentrations compared with low consumers, cumulative average intakes of low-calorie sweetened beverages were not associated with changes in non-high-density lipoprotein cholesterol, low-density lipoprotein cholesterol concentrations, or incident dyslipidemias. Conclusions SSB intake was associated with adverse changes in high-density lipoprotein cholesterol and triglyceride concentrations, along with a higher risk of incident dyslipidemia, suggesting that increased SSB consumption may contribute to the development of dyslipidemia.


Assuntos
Bebidas Adoçadas Artificialmente/efeitos adversos , Dislipidemias/sangue , Dislipidemias/epidemiologia , Sucos de Frutas e Vegetais/efeitos adversos , Lipoproteínas/sangue , Bebidas Adoçadas com Açúcar/efeitos adversos , Biomarcadores/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dislipidemias/diagnóstico , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Triglicerídeos/sangue
16.
Diabetes ; 69(5): 882-892, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32005706

RESUMO

Glucagon is classically described as a counterregulatory hormone that plays an essential role in the protection against hypoglycemia. In addition to its role in the regulation of glucose metabolism, glucagon has been described to promote ketosis in the fasted state. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a new class of glucose-lowering drugs that act primarily in the kidney, but some reports have described direct effects of SGLT2i on α-cells to stimulate glucagon secretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone production, features common to glucagon action. Here, we directly test the ketogenic role of glucagon in mice, demonstrating that neither fasting- nor SGLT2i-induced ketosis is altered by interruption of glucagon signaling. Moreover, any effect of glucagon to stimulate ketogenesis is severely limited by its insulinotropic actions. Collectively, our data suggest that fasting-associated ketosis and the ketogenic effects of SGLT2 inhibitors occur almost entirely independent of glucagon.


Assuntos
Compostos Benzidrílicos/farmacologia , Privação de Alimentos , Glucagon/metabolismo , Glucosídeos/farmacologia , Insulina/sangue , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Glicemia , Epinefrina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
17.
J Clin Invest ; 129(10): 4083-4085, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498152

RESUMO

Genome-wide association studies (GWAS) have provided a wealth of information on potential disease-associated genes in the human population. In particular, several loci have been associated with type 2 diabetes (T2D). However, due to the complexity of the disease, it has been a challenge to unravel the exact effects of specific loci on T2D pathogenesis. In this issue of the JCI, Keller and colleagues developed a systems genetic approach to identify insulin secretion-associated genes in nondiabetic mice followed by tissue-level and functional phenotyping. Several of the loci identified were syntenic with human T2D-related loci, indicating that this approach may be feasible for discerning genetic variation in nondiabetic individuals that may lead to the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Animais , Humanos , Secreção de Insulina , Camundongos , Camundongos Endogâmicos
18.
Curr Diab Rep ; 19(9): 77, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31377934

RESUMO

PURPOSE OF REVIEW: Increased glucose production associated with hepatic insulin resistance contributes to the development of hyperglycemia in T2D. The molecular mechanisms accounting for increased glucose production remain controversial. Our aims were to review recent literature concerning molecular mechanisms regulating glucose production and to discuss these mechanisms in the context of physiological experiments and observations in humans and large animal models. RECENT FINDINGS: Genetic intervention studies in rodents demonstrate that insulin can control hepatic glucose production through both direct effects on the liver, and through indirect effects to inhibit adipose tissue lipolysis and limit gluconeogenic substrate delivery. However, recent experiments in canine models indicate that the direct effects of insulin on the liver are dominant over the indirect effects to regulate glucose production. Recent molecular studies have also identified insulin-independent mechanisms by which hepatocytes sense intrahepatic carbohydrate levels to regulate carbohydrate disposal. Dysregulation of hepatic carbohydrate sensing systems may participate in increased glucose production in the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo
19.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30777938

RESUMO

Bariatric surgeries including vertical sleeve gastrectomy (VSG) ameliorate obesity and diabetes. Weight loss and accompanying increases to insulin sensitivity contribute to improved glycemia after surgery; however, studies in humans also suggest weight-independent actions of bariatric procedures to lower blood glucose, possibly by improving insulin secretion. To evaluate this hypothesis, we compared VSG-operated mice with pair-fed, sham-surgical controls (PF-Sham) 2 weeks after surgery. This paradigm yielded similar postoperative body weight and insulin sensitivity between VSG and calorically restricted PF-Sham animals. However, VSG improved glucose tolerance and markedly enhanced insulin secretion during oral nutrient and i.p. glucose challenges compared with controls. Islets from VSG mice displayed a unique transcriptional signature enriched for genes involved in Ca2+ signaling and insulin secretion pathways. This finding suggests that bariatric surgery leads to intrinsic changes within the islet that alter function. Indeed, islets isolated from VSG mice had increased glucose-stimulated insulin secretion and a left-shifted glucose sensitivity curve compared with islets from PF-Sham mice. Isolated islets from VSG animals showed corresponding increases in the pulse duration of glucose-stimulated Ca2+ oscillations. Together, these findings demonstrate a weight-independent improvement in glycemic control following VSG, which is, in part, driven by improved insulin secretion and associated with substantial changes in islet gene expression. These results support a model in which ß cells play a key role in the adaptation to bariatric surgery and the improved glucose tolerance that is typical of these procedures.


Assuntos
Cirurgia Bariátrica/métodos , Peso Corporal , Gastrectomia/métodos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Glicemia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Redução de Peso
20.
JHEP Rep ; 1(3): 199-202, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32039370

RESUMO

BACKGROUND & AIMS: The I148M variant (rs738409) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is by far the most important genetic determinant of non-alcoholic fatty liver disease (NAFLD). However, in the context of NAFLD, the transcriptional regulation of PNPLA3 in human liver cells is not known. In this study, we aimed to define the relationship between PNPLA3 transcription and disease characteristics of human NAFLD. METHODS: The abundance of PNPLA3 and collagen 1α (COL1α) transcripts was quantified in situ at single-cell resolution using RNAscope® in 87 patients with NAFLD. We examined the association of PNPLA3 and COL1α transcript levels with NAFLD disease severity, defined by histology. RESULTS: While the majority of PNPLA3 transcripts were found in hepatocytes, approximately 7% of PNPLA3-positive cells co-express COL1α, representing activated myofibroblasts. There is no association between the rs738409 genotype and the level of PNPLA3 transcript. The overall PNPLA3 transcript abundance is lower in zone 1 hepatocytes, patients with higher body mass index, and those with advanced liver fibrosis. The negative association between the PNPLA3 transcript levels and liver fibrosis is largely driven by COL1α-positive cells. A significant proportion of PNPLA3 mRNA is seen in the nucleus. The cytoplasmic-to-nuclear PNPLA3 mRNA ratio is inversely associated with NAFLD disease activity. CONCLUSIONS: PNPLA3 transcript abundance and nuclear-to-cytoplasmic translocation are negatively associated with hepatic steatosis and NAFLD disease activity, while its abundance in activated myofibroblasts is inversely associated with the stage of liver fibrosis. LAY SUMMARY: A genetic variant in patatin-like phospholipase domain-containing protein 3 (or PNPLA3) is the most important genetic determinant of non-alcoholic fatty liver disease (NAFLD). However, it is not known how transcriptional regulation of the PNPLA3 gene contributes to the disease characteristics of human NAFLD. Herein, we show that the mRNA levels of PNPLA3, particularly in the cytoplasm, are negatively associated with the severity of NAFLD in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA