Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(23): e2201346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165232

RESUMO

Bioelastomers are extensively used in biomedical applications due to their desirable mechanical strength, tunable properties, and chemical versatility; however, three-dimensional (3D) printing bioelastomers into microscale structures has proven elusive. Herein, a high throughput omnidirectional printing approach via coaxial extrusion is described that fabricates perfusable elastomeric microtubes of unprecedently small inner diameter (350-550 µm) and wall thickness (40-60 µm). The versatility of this approach is shown through the printing of two different polymeric elastomers, followed by photocrosslinking and removal of the fugitive inner phase. Designed experiments are used to tune the microtube dimensions and stiffness to match that of native ex vivo rat vasculature. This approach affords the fabrication of multiple biomimetic shapes resembling cochlea and kidney glomerulus and affords facile, high-throughput generation of perfusable structures that can be seeded with endothelial cells for biomedical applications. Post-printing laser micromachining is performed to generate micro-sized holes (520 µm) in the tube wall to tune microstructure permeability. Importantly, for organ-on-a-chip applications, the described approach takes only 3.6 min to print microtubes (without microholes) over an entire 96-well plate device, in contrast to comparable hole-free structures that take between 1.5 and 6.5 days to fabricate using a manual 3D stamping approach.


Assuntos
Biomimética , Células Endoteliais , Animais , Ratos , Microtecnologia
2.
Opt Express ; 30(4): 5360-5375, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209501

RESUMO

The formation of volumetric nanogratings in fused silica by femtosecond laser pulses are shown to afford new opportunities for manipulating the physical shape and tailoring the optical properties of the modification zone by harnessing unconventional beam shapes. The nanograting assembly was observed to rigorously follow the beam elongation effects induced with conical-shaped phase fronts, permitting a scaling up of the writing volume. Detailed optical characterization of birefringence, dichroism, and scattering loss pointed to flexible new ways to tune the macroscopic optical properties, with advantages in decoupling the induced phase retardation from the modification thickness by controlling the conical phase front angle. Further insights into an unexpected asymmetric response from Gaussian beams modified with concave and convex phase fronts have been provided by nonlinear propagation simulations of the shaped-laser light.

3.
Opt Express ; 30(3): 4189-4201, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209661

RESUMO

Filament arrays were inscribed off-axis in the core of standard single-mode telecommunication fiber, using femtosecond laser pulses. The flexible line-by-line writing formed uniform, parallel filaments, permitting Bragg grating sensing of the photoelastic response from inside of the narrow grating plane. Active monitoring of the Bragg resonance wavelength while driving a lateral fiber tip displacement directly informed on the fiber mechanics when coupled with opto-mechanical modelling. Overlaying of parallel and orthogonal gratings further provided a strongly contrasting azimuthal sensitivity, which paves the way for multi-dimensional displacement sensing with improved precision.

4.
Nat Commun ; 12(1): 6344, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732710

RESUMO

Embedding strong photonic stopbands into traditional optical fibre that can directly access and sense the outside environment is challenging, relying on tedious nano-processing steps that result in fragile thinned fibre. Ultrashort-pulsed laser filaments have recently provided a non-contact means of opening high-aspect ratio nano-holes inside of bulk transparent glasses. This method has been extended here to optical fibre, resulting in high density arrays of laser filamented holes penetrating transversely through the silica cladding and guiding core to provide high refractive index contrast Bragg gratings in the telecommunication band. The point-by-point fabrication was combined with post-chemical etching to engineer strong photonic stopbands directly inside of the compact and flexible fibre. Fibre Bragg gratings with sharply resolved π-shifts are presented for high resolution refractive index sensing from [Formula: see text] = 1 to 1.67 as the nano-holes were readily wetted and filled with various solvents and oils through an intact fibre cladding.

5.
Sci Rep ; 10(1): 21528, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298983

RESUMO

The emergence of high-powered femtosecond lasers presents the opportunity for large volume processing inside of transparent materials, wherein a myriad of nonlinear optical and aberration effects typically convolves to distort the focused beam shape. In this paper, convex and concave conical phase fronts were imposed on femtosecond laser beams and focussed into wide-bandgap glass to generate a vortex beam with tuneable Gaussian-Bessel features offset from the focal plane. The influence of Kerr lensing, plasma defocussing, and surface aberration on the conical phase front shaping were examined over low to high pulse energy delivery and for shallow to deep processing tested to 2.5 mm focussing depth. By isolating the underlying processes, the results demonstrate how conical beams can systematically manipulate the degree of nonlinear interaction and surface aberration to facilitate a controllable inhibition or enhancement of Kerr lensing, plasma defocussing, and surface aberration effects. In this way, long and uniform filament tracks have been generated over shallow to deep focussing by harnessing surface aberration and conical beam shaping without the destabilizing Kerr lensing and plasma defocussing effects. A facile means for compressing and stretching of the focal interaction volume is presented for controlling the three-dimensional micro- and nano-structuring of transparent materials.

6.
Opt Express ; 27(18): 25078-25090, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510387

RESUMO

A systematic study of glass scribing is presented on the benefits of ultrafast laser burst trains in generating filamentation tracks to guide cleaving of glass substrates. The interplay of Kerr self-focusing, plasma defocusing, and burst-train accumulation effects in filament formation was characterized by time-resolved in-situ microscopic imaging. Various filament-track scribing geometries were compared with and without assistance from burst-train pulse delivery or surface V-groove ablation. The cleaving guidance and reproducibility were examined together with the breaking force, facet morphology and flexural strength of cleaved substrates to assess the overall scribing and cleaving quality. The reported results attest to the benefits and flexibility of burst-mode ultrafast laser interactions to assist cleaving of optically transparent materials along well formed filament arrays.

7.
Opt Express ; 26(7): 9323-9331, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715885

RESUMO

A new beam delivery method is introduced for controlling filament formation in optical fiber that enables point-by-point writing of 1st order fiber Bragg gratings (FBGs) with single femtosecond laser pulses. Uniform filament tracks with azimuthal symmetry were formed fully through the 9.3 µm core waveguide by a modified immersion focusing method to eliminate astigmatism by the cylindrical fiber shape. Filament arrays were precisely assembled inside of single-mode fiber, generating strong FBG resonances in the telecommunication band. Laser exposure control within this unique thin-grating geometry were key to manipulating the relative strength of the Bragg and cladding mode resonances while also independently tailoring their spectral resolution and features. This filament-by-filament writing rapidly forms gratings with highly flexible pattern control to tune wavelength, or introduce optical defects, demonstrated by a π-shifted FBG having a sharp 25 pm resonance embedded within a broader Bragg peak.

8.
Adv Mater ; 30(12): e1706937, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29405442

RESUMO

A material architecture and laser-based microfabrication technique is introduced to produce electrically conductive films (sheet resistance = 2.95 Ω sq-1 ; resistivity = 1.77 × 10-6 Ω m) that are soft, elastic (strain limit >100%), and optically transparent. The films are composed of a grid-like array of visually imperceptible liquid-metal (LM) lines on a clear elastomer. Unlike previous efforts in transparent LM circuitry, the current approach enables fully imperceptible electronics that have not only high optical transmittance (>85% at 550 nm) but are also invisible under typical lighting conditions and reading distances. This unique combination of properties is enabled with a laser writing technique that results in LM grid patterns with a line width and pitch as small as 4.5 and 100 µm, respectively-yielding grid-like wiring that has adequate conductivity for digital functionality but is also well below the threshold for visual perception. The electrical, mechanical, electromechanical, and optomechanical properties of the films are characterized and it is found that high conductivity and transparency are preserved at tensile strains of ≈100%. To demonstrate their effectiveness for emerging applications in transparent displays and sensing electronics, the material architecture is incorporated into a couple of illustrative use cases related to chemical hazard warning.

9.
Opt Express ; 25(5): 5758-5771, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380833

RESUMO

We demonstrate the hybrid integration of an O-band vertical-cavity surface-emitting laser (VCSEL) onto a silicon photonic chip using a grating coupler that is optimized to simultaneously provide feedback to maintain the single emission polarization and efficient in-plane coupling. The grating coupler was fabricated on silicon-on-insulator using a standard silicon photonics foundry process, and integrated with a commercially available VCSEL. A transparent VCSEL submount was fabricated with femtosecond laser templating and chemical etching to simplify the passive and active alignment steps. A record-high VCSEL-to-chip coupling efficiency of -5 dB was obtained at a bias current of 2.5 mA. The slope efficiency and output power are competitive with microcavity hybrid silicon lasers. The results show the feasibility of VCSELs as low threshold current on-chip sources for silicon photonics.

10.
Opt Lett ; 42(2): 195-198, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081070

RESUMO

Second harmonic generation (SHG) is demonstrated in femtosecond laser written waveguides in fused silica through a combination of thermal poling and laser-based quasi-phase-matching (QPM) techniques. Quasi-phase-matching was controlled by the periodic erasure of induced nonlinearity through femtosecond laser erasure. A maximum SHG conversion efficiency of 6.6±0.5×10-5%/W is reported for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0 mm long waveguide. For a shorter sample, an effective second-order nonlinearity of χ(2)=0.012±0.001 pm/V was measured. Chirped QPM structures for wider SHG bandwidths also were demonstrated. Such periodically poled waveguides are promising for introducing nonlinear optical components within the 3D passive optical circuits that can be flexibly formed in fused silica by femtosecond laser writing.

11.
Opt Lett ; 41(5): 1022-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974106

RESUMO

Thermal poling of femtosecond laser written waveguides was investigated using second-harmonic microscopy under three approaches: (1) pre-poling and (2) post-poling in which fused silica substrates were poled before or after waveguide formation, respectively, and (3) double poling in which poling was applied both before and after laser writing. Effective nonlinear waveguide interaction strength was assessed relative to the mode profile and the assessments demonstrated an erasure effect of 81% in pre-poling and an ion migration blocking effect of 26% in post-poling. Double poling was found to recover the nonlinearity over the modal zone, overcoming prior difficulties with combining laser processing and thermal poling, opening up a future avenue for creating active devices through femtosecond laser writing of nonlinear optical circuits in fused silica.


Assuntos
Temperatura Alta , Lasers , Dióxido de Silício , Eletricidade , Microscopia , Dinâmica não Linear , Fatores de Tempo
12.
Sci Rep ; 6: 22294, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26922872

RESUMO

Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 µm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.


Assuntos
Técnicas Biossensoriais , Holografia , Lasers , Nanoestruturas , Nanotecnologia , Óptica e Fotônica , Microfluídica , Nanoestruturas/ultraestrutura
13.
Nanoscale ; 7(47): 19905-13, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568395

RESUMO

A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

14.
Opt Express ; 23(13): 16760-71, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191688

RESUMO

Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

15.
Opt Lett ; 40(9): 2064-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927785

RESUMO

A new method for generating high-repetition-rate (12.7-38.2 MHz) burst trains of femtosecond laser pulses has been demonstrated for the purpose of tailoring ultrashort laser interactions in material processing that can harness the heat accumulation effect among pulses separated by a short interval (i.e., 26 ns). Computer-controlled time delays were applied to synchronously trigger the high frequency switching of a high voltage Pockels cell to specify distinctive values of polarization rotation for each round-trip of a laser pulse cycling within a passive resonator. Polarization dependent output coupling facilitated the flexible shaping of the burst envelope profile to provide burst trains of up to ∼1 mJ of burst energy divided over a selectable number (1 to 25) of pulses. Individual pulses of variable energy up to 150 µJ and with pulse duration tunable over 70 fs to 2 ps, were applied in burst trains to generate deep and high aspect ratio holes that could not form with low-repetition-rate laser pulses.

16.
Opt Lett ; 40(4): 657-60, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680174

RESUMO

Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments.

17.
Lab Chip ; 14(19): 3817-29, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25120138

RESUMO

The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.


Assuntos
Lasers , Técnicas Analíticas Microfluídicas/instrumentação , Fibras Ópticas , Óptica e Fotônica/instrumentação , Desenho de Equipamento , Nanotecnologia
18.
Opt Express ; 21(20): 24076-86, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104316

RESUMO

Temperature-compensated 3D fiber shape sensing is demonstrated with femtosecond laser direct-written optical and Bragg grating waveguides that were distributed axially and radially inside a single coreless optical fiber. Efficient light coupling between the laser-written optical circuit elements and a standard single-mode fiber (SMF) was obtained for the first time by 3D laser writing of a 1 × 3 directional coupler to meet with the core waveguide in the fusion-spliced SMF. Simultaneous interrogation of nine Bragg gratings, distributed along three laterally offset waveguides, is presented through a single waveguide port at 1 kHz sampling rate to follow the Bragg wavelength shifts in real-time and thereby infer shape and temperature profile unambiguously along the fiber length. This distributed 3D strain and thermal sensor is freestanding, flexible, compact, lightweight and opens new directions for creating fiber cladding photonic devices for a wide range of applications from shape and thermal sensing to guidance of biomedical catheters and tools in minimally invasive surgery.

19.
Biomed Opt Express ; 4(8): 1472-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24010009

RESUMO

Femtosecond laser processes were optimized for nonlinear interactions with various optical materials to develop a novel biophotonic lab-on-a-chip device that integrates laser-formed waveguides (WGs), microfluidic channels and photonic crystals (PCs). Such integration seeks the unique demonstration of dual PC functionalities: (1) efficient chromatographic separation and filtration of analytes through a porous PC embedded inside a microfluidic channel and (2) optofluidic spectroscopy through embedded WGs that probe PC stopband shifts as varying analyte concentrations flow and separate. The building blocks together with their integration were demonstrated, providing embedded porous PCs through which electrochromatography drove an accelerated mobile phase of analyte and an optical stopband was probed via integrated buried WGs. Together, these laboratory results underpin the promise of simultaneous chromatographic and spectroscopic capabilities in a single PC optofluidic device.

20.
Opt Express ; 21(4): 4493-502, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481982

RESUMO

The positional alignment of femtosecond laser written Bragg grating waveguides within standard and coreless optical fiber has been exploited to vary symmetry and open strong optical coupling to a high density of asymmetric cladding modes. This coupling was further intensified with tight focusing of the laser pulses through an oil-immersion lens to control mode size against an asymmetric refractive index profile. By extending this Bragg grating waveguide writing into bulk fused silica glass, strong coupling to a continuum of radiation-like modes facilitated a significant broadening to over hundreds of nanometers bandwidth that blended into the narrow Bragg resonance to form into a strongly isolating (43 dB) optical edge filter. This Bragg resonance defined exceptionally steep edge slopes of 136 dB/nm and 185 dB/nm for unpolarized and linearly polarized light, respectively, that were tunable through the 1450 nm to 1550 nm telecommunication band.


Assuntos
Filtração/instrumentação , Lasers , Refratometria/instrumentação , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA