RESUMO
Fetal intracranial hemorrhage represents a rare event with an estimated prevalence of 1:10 000 pregnancies. We report a patient diagnosed prenatally with intracranial hemorrhage and ventriculomegaly carrying a novel, previously unreported, likely pathogenic variant in COL4A1. At the gestational age of 27 weeks, dilation of lateral ventricles was detected during a routine prenatal ultrasound scan, confirmed by prenatal MRI at 30 + 3 weeks of gestation. Prenatal examinations included amniocentesis with conventional G-band karyotyping and arrayCGH, and maternal testing for TORCH and parvovirus B19 infections. Virtual gene panel based on whole-exome sequencing data was performed postnatally. At the age of 2.5 months, the patient manifested epileptic seizures that remain difficult to control. Postnatal MRI showed partial thalamic fusion and polymicrogyria, in addition to severe enlargement of lateral ventricles, multiple deposits of hemosiderin in cerebral and cerebellar hemispheres, and thin optic nerve and chiasma. Virtual gene panel based on whole-exome sequencing data led to a detection of a de novo previously unreported in-frame deletion NM_001845.5:c.4688_4711del in COL4A1 located in the highly conserved NC1 domain initiating collagen helix assembly. The presented case lies one a more severe end of the COL4A1 mutation-related disease spectrum, manifesting as fetal intracranial bleeding, malformation of cortical development, drug-resistant epilepsy, and developmental delay.
Assuntos
Hidrocefalia , Polimicrogiria , Gravidez , Feminino , Humanos , Lactente , Polimicrogiria/genética , Mutação , Hemorragias Intracranianas , Feto , Colágeno Tipo IV/genéticaRESUMO
BACKGROUND AND OBJECTIVES: The SLC35A2 gene, located at chromosome Xp11.23, encodes for a uridine diphosphate-galactose transporter. We describe clinical, genetic, neuroimaging, EEG, and histopathologic findings and assess possible predictors of postoperative seizure and cognitive outcome in 47 patients with refractory epilepsy and brain somatic SLC35A2 gene variants. METHODS: This is a retrospective multicenter study where we performed a descriptive analysis and classical hypothesis testing. We included the variables of interest significantly associated with the outcomes in the generalized linear models. RESULTS: Two main phenotypes were associated with brain somatic SLC35A2 variants: (1) early epileptic encephalopathy (EE, 39 patients) with epileptic spasms as the predominant seizure type and moderate to severe intellectual disability and (2) drug-resistant focal epilepsy (DR-FE, 8 patients) associated with normal/borderline cognitive function and specific neuropsychological deficits. Brain MRI was abnormal in all patients with EE and in 50% of those with DR-FE. Histopathology review identified mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy in 44/47 patients and was inconclusive in 3. The 47 patients harbored 42 distinct mosaic SLC35A2 variants, including 14 (33.3%) missense, 13 (30.9%) frameshift, 10 (23.8%) nonsense, 4 (9.5%) in-frame deletions/duplications, and 1 (2.4%) splicing variant. Variant allele frequencies (VAFs) ranged from 1.4% to 52.6% (mean VAF: 17.3 ± 13.5). At last follow-up (35.5 ± 21.5 months), 30 patients (63.8%) were in Engel Class I, of which 26 (55.3%) were in Class IA. Cognitive performances remained unchanged in most patients after surgery. Regression analyses showed that the probability of achieving both Engel Class IA and Class I outcomes, adjusted by age at seizure onset, was lower when the duration of epilepsy increased and higher when postoperative EEG was normal or improved. Lower brain VAF was associated with improved postoperative cognitive outcome in the analysis of associations, but this finding was not confirmed in regression analyses. DISCUSSION: Brain somatic SLC35A2 gene variants are associated with 2 main clinical phenotypes, EE and DR-FE, and a histopathologic diagnosis of MOGHE. Additional studies will be needed to delineate any possible correlation between specific genetic variants, mutational load in the epileptogenic tissue, and surgical outcomes.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia/diagnóstico , Convulsões/patologia , Estudos Retrospectivos , Resultado do Tratamento , EletroencefalografiaRESUMO
Background and Objectives: Malformations of cortical development (MCD), though individually rare, constitute a significant burden of disease. The diagnostic yield of next-generation sequencing (NGS) in these patients varies across studies and methods, and novel genes and variants continue to emerge. Methods: Patients (n = 123) with a definite radiologic or histopathologic diagnosis of MCD, with or without epilepsy were included in this study. They underwent NGS-based targeted gene panel (TGP) testing, whole-exome sequencing (WES), or WES-based virtual panel testing. Selected patients who underwent epilepsy surgery (n = 69) also had somatic gene testing of brain tissue-derived DNA. We analyzed predictors of positive germline genetic finding and diagnostic yield of respective methods. Results: Pathogenic or likely pathogenic germline genetic variants were detected in 21% of patients (26/123). In the surgical subgroup (69/123), we performed somatic sequencing in 40% of cases (28/69) and detected causal variants in 18% (5/28). Diagnostic yield did not differ between TGP, WES-based virtual gene panel, and open WES (p = 0.69). Diagnosis of focal cortical dysplasia type 2A, epilepsy, and intellectual disability were associated with positive results of germline testing. We report previously unpublished variants in 16/26 patients and 4 cases of MCD with likely pathogenic variants in non-MCD genes. Discussion: In this study, we are reporting genetic findings of a large cohort of MCD patients with epilepsy or potentially epileptogenic MCD. We determine predictors of successful ascertainment of a genetic diagnosis in real-life setting and report novel, likely pathogenic variants in MCD and non-MCD genes alike.
RESUMO
The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity.
Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/fisiopatologia , Animais , Eletroencefalografia/métodos , Eletroencefalografia/tendências , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Convulsões/induzido quimicamente , Toxina Tetânica/toxicidade , Fatores de TempoRESUMO
BACKGROUND: Variants of GATOR1-genes represent a recognised cause of focal cortical dysplasia (FCD), the most common structural aetiology in paediatric drug-resistant focal epilepsy. Reports on familial cases of GATOR1-associated FCD are limited, especially with respect to epilepsy surgery outcomes. METHODS: We present phenotypical manifestations of four unrelated patients with drug-resistant focal epilepsy, FCD and a first-degree relative with epilepsy. All patients underwent targeted gene panel sequencing as a part of the presurgical work up. Literature search was performed to compare our findings to previously published cases. RESULTS: The children (probands) had a more severe phenotype than their parents, including drug-resistant epilepsy and developmental delay, and they failed to achieve seizure freedom post-surgically. All patients had histopathologically confirmed FCD (types IIa, IIb, Ia). In Patient 1 and her affected father, we detected a known pathogenic NPRL2 variant. In patients 2 and 3 and their affected parents, we found novel likely pathogenic germline DEPDC5 variants. In family 4, we detected a novel variant in NPRL3. We identified 15 additional cases who underwent epilepsy surgery for GATOR1-associated FCD, with a positive family history of epilepsy in the literature; in 8/13 tested, the variant was inherited from an asymptomatic parent. CONCLUSION: The presented cases displayed a severity gradient in phenotype with children more severely affected than the parents. Although patients with GATOR1-associated FCD are considered good surgical candidates, post-surgical seizure outcome was poor in our familial cases, suggesting that accurate identification of the epileptogenic zone may be more challenging in this subgroup of patients.