Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Exp Cell Res ; 437(2): 114015, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561062

RESUMO

A major obstacle in improving survival in pediatric T-cell acute lymphoblastic leukemia is understanding how to predict and treat leukemia relapse in the CNS. Leukemia cells are capable of infiltrating and residing within the CNS, primarily the leptomeninges, where they interact with the microenvironment and remain sheltered from systemic treatment. These cells can survive in the CNS, by hijacking the microenvironment and disrupting normal functions, thus promoting malignant transformation. While the protective effects of the bone marrow niche have been widely studied, the mechanisms behind leukemia infiltration into the CNS and the role of the CNS niche in leukemia cell survival remain unknown. We identified a dysregulated gene expression profile in CNS infiltrated T-ALL and CNS relapse, promoting cell survival, chemoresistance, and disease progression. Furthermore, we discovered that interactions between leukemia cells and human meningeal cells induced epigenetic alterations, such as changes in histone modifications, including H3K36me3 levels. These findings are a step towards understanding the molecular mechanisms promoting leukemia cell survival in the CNS microenvironment. Our results highlight genetic and epigenetic alterations induced by interactions between leukemia cells and the CNS niche, which could potentially be utilized as biomarkers to predict CNS infiltration and CNS relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Sobrevivência Celular , Linfócitos T/metabolismo , Recidiva , Ciclo Celular , Microambiente Tumoral
2.
ACS Appl Bio Mater ; 6(9): 3790-3797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647213

RESUMO

There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Adulto , Humanos , Glioblastoma/diagnóstico , Encéfalo , Neoplasias Encefálicas/diagnóstico , Adapaleno
3.
Transl Psychiatry ; 13(1): 258, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443041

RESUMO

Central nervous system (CNS) tumors account for almost a third of pediatric cancers and are the largest contributor to cancer-related death in children. Cranial radiation therapy (CRT) is, often in combination with chemotherapy and surgery, effective in the treatment of high-grade childhood brain cancers, but it has been associated with late complications in 50-90% of survivors, such as decline in cognition and mood, decreased social competence, and fatigue. A leading hypothesis to explain the decline in cognition, at least partially, is injury to the neural stem and progenitor cells (NSPCs), which leads to apoptosis and altered fate choice, favoring gliogenesis over neurogenesis. Hence, treatments harnessing neurogenesis are of great relevance in this context. Lithium, a well-known mood stabilizer, has neuroprotective and antitumor effects and has been found to reverse irradiation-induced damage in rodents, at least in part by regulating the expression of the glutamate decarboxylase 2 gene (Gad2) via promoter demethylation in rat NSPCs. Additionally, lithium was shown to rescue irradiation-induced cognitive defects in mice. Here, we show that irradiation (IR) alone or in combination with lithium chloride (LiCl) caused major changes in gene expression and global DNA methylation in iPSC-derived human NSPCs (hNSPCs) compared to untreated cells, as well as LiCl-only-treated cells. The pattern of DNA methylation changes after IR-treatment alone was stochastic and observed across many different gene groups, whereas differences in DNA methylation after LiCl-treatment of irradiated cells were more directed to specific promoters of genes, including genes associated with neurogenesis, for example GAD2. Interestingly, IR and IR + LiCl treatment affected the promoter methylation and expression of several genes encoding factors involved in BMP signaling, including the BMP antagonist gremlin1. We propose that lithium in addition to promoting neuronal differentiation, also represses glial differentiation in hNSPCs with DNA methylation regulation being a key mechanism of action.


Assuntos
Metilação de DNA , Lítio , Criança , Humanos , Ratos , Camundongos , Animais , Lítio/farmacologia , Neurogênese , Expressão Gênica , Compostos de Lítio/farmacologia
4.
Mol Psychiatry ; 26(1): 322-340, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31723242

RESUMO

Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.


Assuntos
Cognição/efeitos dos fármacos , Compostos de Lítio/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos da radiação , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos
5.
Cancers (Basel) ; 12(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517178

RESUMO

Pseudokinases, comprising 10% of the human kinome, are emerging as regulators of canonical kinases and their functions are starting to be defined. We previously identified the pseudokinase Nuclear Receptor Binding Protein 2 (NRBP2) in a screen for genes regulated during neural differentiation. During mouse brain development, NRBP2 is expressed in the cerebellum, and in the adult brain, mainly confined to specific neuronal populations. To study the role of NRBP2 in brain tumors, we stained a brain tumor tissue array for NRPB2, and find its expression to be low, or absent, in a majority of the tumors. This includes medulloblastoma (MB), a pediatric tumor of the cerebellum. Using database mining of published MB data sets, we also find that NRBP2 is expressed at a lower level in MB than in the normal cerebellum. Recent studies indicate that MB exhibits frequent epigenetic alternations and we therefore treated MB cell lines with drugs inhibiting DNA methylation or histone deacetylation, which leads to an upregulation of NRBP2 mRNA expression, showing that it is under epigenetic regulation in cultured MB cells. Furthermore, forced overexpression of NRBP2 in MB cell lines causes a dramatic decrease in cell numbers, increased cell death, impaired cell migration and inhibited cell invasion in vitro. Taken together, our data indicate that downregulation of NRBP2 may be a feature by which MB cells escape growth regulation.

6.
Mol Cell Neurosci ; 104: 103481, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169478

RESUMO

The development of the cerebral cortex depends on numerous parameters, including extracellular cues and microenvironmental factors that also affect gene expression. C-Terminal Binding Proteins (CtBPs) 1 and 2 are transcriptional co-repressors which have been shown to be critically involved in embryonic development. CtBPs are oxygen sensing molecules, and we have previously demonstrated an important role for CtBP1 in integrating oxygen levels and BMP-signaling to influence neural progenitor fate choice. In turn, CtBP2 has been associated with neurodevelopment and neurological disease, and we have shown that CtBP2 acetylation and dimerization, required for proper transcriptional activity, are regulated by microenvironmental oxygen levels. Yet, the putative function of CtBP2 in mammalian cortical development and neurogenesis in vivo is still largely unknown. Here we show that CtBP2 was widely expressed by neural stem and progenitor cells (NSPCs) as well as neurons during cortical development in mice. By using in utero electroporation of siRNA to reduce the levels of CtBP2 mRNA and protein in the developing mouse brain, we found that the NSPC proliferation and migration were largely perturbed, while glial differentiation under these conditions remained unchanged. Our study provides evidence that CtBP2 is required for the maintenance and migration of the NSPCs during mouse cortical development.


Assuntos
Oxirredutases do Álcool/metabolismo , Córtex Cerebral/metabolismo , Proteínas Correpressoras/metabolismo , Neurogênese , Oxirredutases do Álcool/genética , Animais , Córtex Cerebral/embriologia , Proteínas Correpressoras/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo
7.
Front Genet ; 10: 593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316548

RESUMO

Controversial evidence points to a possible involvement of methylmercury (MeHg) in the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we used human neuroepithelial stem cells from healthy donors and from an autistic patient bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg would induce cellular changes comparable to those seen in cells derived from the ASD patient. In healthy cells, a subcytotoxic concentration of MeHg enhanced astroglial differentiation similarly to what observed in the diseased cells (N1), as shown by the number of GFAP positive cells and immunofluorescence signal intensity. In both healthy MeHg-treated and N1 untreated cells, aberrations in Notch pathway activity seemed to play a critical role in promoting the differentiation toward glia. Accordingly, treatment with the established Notch inhibitor DAPT reversed the altered differentiation. Although our data are not conclusive since only one of the genes involved in ASD is considered, the results provide novel evidence suggesting that developmental exposure to MeHg, even at subcytotoxic concentrations, induces alterations in astroglial differentiation similar to those observed in ASD.

8.
Neuroscience ; 402: 78-89, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677486

RESUMO

Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos Laterais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Neuroepiteliais/metabolismo
9.
BMC Biol ; 16(1): 57, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843722

RESUMO

BACKGROUND: Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. RESULTS: To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. CONCLUSIONS: The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Encéfalo/ultraestrutura , Humanos , Hydra/ultraestrutura
11.
Respiration ; 90(6): 481-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26613253

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating disorder. Despite enormous efforts in clinical research, effective treatment options are lacking, and mortality rates remain unacceptably high. OBJECTIVES: A male patient with severe ARDS showed no clinical improvement with conventional therapies. Hence, an emergent experimental intervention was performed. METHODS: We performed intratracheal administration of autologous peripheral blood-derived mononuclear cells (PBMCs) and erythropoietin (EPO). RESULTS: We found that after 2 days of initial PBMC/EPO application, lung function improved and extracorporeal membrane oxygenation (ECMO) support was reduced. Bronchoscopy and serum inflammatory markers revealed reduced inflammation. Additionally, serum concentration of miR-449a, b, c and miR-34a, a transient upregulation of E-cadherin and associated chromatin marks in PBMCs indicated airway epithelial differentiation. Extracellular vesicles from PBMCs demonstrated anti-inflammatory capacity in a TNF-α-mediated nuclear factor-x03BA;B in vitro assay. Despite improving respiratory function, the patient died of multisystem organ failure on day 38 of ECMO treatment. CONCLUSIONS: This case report provides initial encouraging evidence to use locally instilled PBMC/EPO for treatment of severe refractory ARDS. The observed clinical improvement may partially be due to the anti-inflammatory effects of PBMC/EPO to promote tissue regeneration. Further studies are needed for more in-depth understanding of the underlying mechanisms of in vivo regeneration.


Assuntos
Leucócitos Mononucleares/transplante , Síndrome do Desconforto Respiratório/terapia , Caderinas/sangue , Citocinas/sangue , Regulação para Baixo , Eritropoetina/administração & dosagem , Oxigenação por Membrana Extracorpórea , Evolução Fatal , Humanos , Masculino , MicroRNAs/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/sangue , Transplante Autólogo , Regulação para Cima , Adulto Jovem
12.
Nat Neurosci ; 18(6): 807-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938884

RESUMO

Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idade de Início , Alelos , Estudos de Coortes , DNA/genética , Regulação da Expressão Gênica/fisiologia , Genes Reporter/genética , Humanos , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica
13.
Exp Cell Res ; 332(1): 128-35, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447313

RESUMO

The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.


Assuntos
Proteínas do Olho/metabolismo , Células-Tronco Neurais/metabolismo , Oxigênio/fisiologia , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Multimerização Proteica , Transporte Proteico , Ratos , Sirtuína 1/metabolismo
14.
Front Neurosci ; 9: 483, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733796

RESUMO

The process of neurogenesis, through which the entire nervous system of an organism is formed, has attracted immense scientific attention for decades. How can a single neural stem cell give rise to astrocytes, oligodendrocytes, and neurons? Furthermore, how is a neuron led to choose between the hundreds of different neuronal subtypes that the vertebrate CNS contains? Traditionally, niche signals and transcription factors have been on the spotlight. Recent research is increasingly demonstrating that the answer may partially lie in epigenetic regulation of gene expression. In this article, we comprehensively review the role of post-translational histone modifications in neurogenesis in both the embryonic and adult CNS.

15.
Proc Natl Acad Sci U S A ; 111(45): 16124-9, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349433

RESUMO

Extracellular soluble signals are known to play a critical role in maintaining neuronal function and homeostasis in the CNS. However, the CNS is also composed of extracellular matrix macromolecules and glia support cells, and the contribution of the physical attributes of these components in maintenance and regulation of neuronal function is not well understood. Because these components possess well-defined topography, we theorize a role for topography in neuronal development and we demonstrate that survival and function of hippocampal neurons and differentiation of telencephalic neural stem cells is modulated by nanoroughness. At roughnesses corresponding to that of healthy astrocytes, hippocampal neurons dissociated and survived independent from astrocytes and showed superior functional traits (increased polarity and calcium flux). Furthermore, telencephalic neural stem cells differentiated into neurons even under exogenous signals that favor astrocytic differentiation. The decoupling of neurons from astrocytes seemed to be triggered by changes to astrocyte apical-surface topography in response to nanoroughness. Blocking signaling through mechanosensing cation channels using GsMTx4 negated the ability of neurons to sense the nanoroughness and promoted decoupling of neurons from astrocytes, thus providing direct evidence for the role of nanotopography in neuron-astrocyte interactions. We extrapolate the role of topography to neurodegenerative conditions and show that regions of amyloid plaque buildup in brain tissue of Alzheimer's patients are accompanied by detrimental changes in tissue roughness. These findings suggest a role for astrocyte and ECM-induced topographical changes in neuronal pathologies and provide new insights for developing therapeutic targets and engineering of neural biomaterials.


Assuntos
Doença de Alzheimer/metabolismo , Canais de Cálcio/metabolismo , Comunicação Celular , Mecanotransdução Celular , Neurônios/metabolismo , Doença de Alzheimer/mortalidade , Animais , Astrócitos/patologia , Diferenciação Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Neurônios/patologia , Células PC12 , Peptídeos/farmacologia , Ratos , Venenos de Aranha/farmacologia
16.
Stem Cell Reports ; 3(3): 502-15, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25241747

RESUMO

Signaling factors including retinoic acid (RA) and thyroid hormone (T3) promote neuronal, oligodendrocyte, and astrocyte differentiation of cortical neural stem cells (NSCs). However, the functional specificity of transcriptional repressor checkpoints controlling these differentiation programs remains unclear. Here, we show by genome-wide analysis that histone deacetylase (HDAC)2 and HDAC3 show overlapping and distinct promoter occupancy at neuronal and oligodendrocyte-related genes in NSCs. The absence of HDAC3, but not HDAC2, initiated a neuronal differentiation pathway in NSCs. The ablation of the corepressor NCOR or HDAC2, in conjunction with T3 treatment, resulted in increased expression of oligodendrocyte genes, revealing a direct HDAC2-mediated repression of Sox8 and Sox10 expression. Interestingly, Sox10 was required also for maintaining the more differentiated state by repression of stem cell programming factors such as Sox2 and Sox9. Distinct and nonredundant actions of NCORs and HDACs are thus critical for control of lineage progression and differentiation programs in neural progenitors.


Assuntos
Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Células-Tronco Neurais/citologia , Animais , Células Cultivadas , Células-Tronco Neurais/metabolismo , Neurogênese , Regiões Promotoras Genéticas , Ratos , Fatores de Transcrição SOXE/genética
17.
Cell Rep ; 8(3): 665-70, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25088415

RESUMO

Bone morphogenetic proteins (BMPs) secreted by the dorsal neural tube and overlying ectoderm are key signals for the specification of the roof plate and dorsal interneuron populations. However, the signals that confer nonneurogenic character to the roof plate region are largely unknown. We report that the roof plate region shows elevated oxygen levels compared to neurogenic regions of the neural tube. These high oxygen levels are required for the expression of the antineuronal transcription factor Hes1 in the roof plate region. The transcriptional corepressor CtBP is a critical mediator of the oxygen-sensing response. High oxygen promotes a decrease in the CtBP occupancy of the promoter of Hes1. Furthermore, under conditions of high oxygen and BMP, CtBP associates with HES1 and represses neurogenesis. We propose that CtBP integrates signals originating from microenvironmental levels of oxygen and BMP to confer nonneurogenic character to the roof plate region.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Oxigênio/metabolismo , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Hipóxia Celular , Células Cultivadas , Embrião de Galinha , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/citologia , Tubo Neural/citologia , Tubo Neural/metabolismo , Regiões Promotoras Genéticas , Ratos , Fatores de Transcrição HES-1 , Fatores de Transcrição/genética
18.
Neurobiol Dis ; 71: 220-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149263

RESUMO

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system (CNS) in young adults. Chronic treatments with histone deacetylase inhibitors (HDACis) have been reported to ameliorate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by targeting immune responses. We have recently shown that the HDAC inhibition/knockdown in the presence of thyroid hormone (T3) can also promote oligodendrocyte (OL) differentiation and expression of myelin genes in neural stem cells (NSCs) and oligodendrocyte precursors (OPCs). In this study, we found that treatment with an HDACi, valproic acid (VPA), and T3, alone or in combination, directly affects encephalitogenic CD4+ T cells. VPA, but not T3, compromised their proliferation, while both molecules reduced the frequency of IL-17-producing cells. Transfer of T3, VPA and VPA/T3 treated encephalitogenic CD4+ T cells into naïve rats induced less severe EAE, indicating that the effects of these molecules are persistent and do not require their maintenance after the initial stimuli. Thus, we investigated the effect of acute treatment with VPA and l-thyroxine (T4), a precursor of T3, on myelin oligodendrocyte glycoprotein-induced EAE in Dark Agouti rats, a close mimic of MS. We found that a brief treatment after disease onset led to sustained amelioration of EAE and prevention of inflammatory demyelination in the CNS accompanied with a higher expression of myelin-related genes in the brain. Furthermore, the treatment modulated immune responses, reduced the number of CD4+ T cells and affected the Th1 differentiation program in the brain. Our data indicate that an acute treatment with VPA and T4 after the onset of EAE can produce persistent clinically relevant therapeutic effects by limiting the pathogenic immune reactions while promoting myelin gene expression.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Inibidores Enzimáticos/uso terapêutico , Tiroxina/uso terapêutico , Ácido Valproico/uso terapêutico , Análise de Variância , Animais , Encéfalo/patologia , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/etiologia , Citometria de Fluxo , Interleucina-17/metabolismo , Antígeno Ki-67/metabolismo , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/toxicidade , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Ratos
19.
J Mol Biol ; 426(20): 3467-77, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24747049

RESUMO

Neural stem cell (NSC) state and fate depend on spatially and temporally synchronized transcriptional and epigenetic regulation of the expression of extrinsic signaling factors and intrinsic cell-specific genes, but the functional roles for chromatin-modifying enzymes in neural differentiation remain poorly understood. Here we show that the histone demethylases KDM4A (JMJD2A) and KDM4C (JMJD2C) are essential for proper differentiation of NSCs in vitro and in vivo. KDM4A/C were required for neuronal differentiation, survival and expression of the neurotrophic signaling factor BDNF in association with promoter H3K9 demethylation and RNA polymerase II recruitment. Unexpectedly, KDM4A/C were essential for selective H3K36 demethylation and loss of RNA polymerase II recruitment in transcribed regions of the astrocyte-characteristic gene GFAP, thereby in parallel repressing astrocytic differentiation by control of elongation. We propose that gene- and lysine-specific KDM4A/C-mediated control of histone methylation and thereby regulation of intrinsic factors and signaling factors such as BDNF provide a novel control mechanism of lineage decision.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Proteína Glial Fibrilar Ácida/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Immunoblotting , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/metabolismo , Metilação , Camundongos , Microscopia de Fluorescência , Células-Tronco Neurais/citologia , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Polimerase II/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Autophagy ; 10(4): 556-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429873

RESUMO

Modifications of histones, the chief protein components of the chromatin, have emerged as critical regulators of life and death. While the "apoptotic histone code" came to light a few years ago, accumulating evidence indicates that autophagy, a cell survival pathway, is also heavily regulated by histone-modifying proteins. In this review we describe the emerging "autophagic histone code" and the role of histone modifications in the cellular life vs. death decision.


Assuntos
Autofagia/genética , Cromatina/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Acetilação , Animais , Autofagia/fisiologia , Morte Celular/genética , Sobrevivência Celular/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA