Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(50): 47432-47433, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570242

RESUMO

[This corrects the article DOI: 10.1021/acsomega.2c03734.].

2.
ACS Omega ; 7(46): 41968-41980, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440151

RESUMO

Noise pollution, which has become a major environmental issue in urban areas, can be minimized using acoustic insulation derived from cellulose-silica aerogel. The raw materials required in the process include waste newspaper-based cellulose, geothermal silica, and NaOH/ZnO solution. Therefore, this study investigates the effect of cellulose, silica, and ZnO concentrations on optimizing the sound absorption coefficient (SAC) using the Box-Behnken design (BBD). The results showed that the optimum conditions were obtained at 39.8578 wt % cellulose, 16.5428 wt % silica, and 0.5684 wt % ZnO. The impedance test for the cellulose aerogel and cellulose-silica aerogel showed SAC values of 0.59 and 0.70, respectively, and were characterized by XRD, FTIR, BET-BJH, SEM-EDX, and TG. The results of XRD and FTIR data indicate that the product was cellulose-silica aerogel, and the SEM micrographs showed that silica particles were attached to the fiber surface. Furthermore, type IV isotherms were observed in the cellulose-silica aerogel, typical of mesoporous materials. The presence of silica strengthened the aerogel structure, improved its thermal stability, and increased the surface area but decreased its pore size.

3.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499183

RESUMO

Bamboo, a fast-growing plant from Asia, is used as building material with unique properties, while exhibiting fast degradation due to its hydrophobicity. Therefore, many attempts have been implemented using several technologies for bamboo modification to alter the hydrophobicity. Most previous studies producing superhydrophobic properties are conducted by using tetraethoxysilane (TEOS) as a precursor agent. However, this method, using TEOS with harmful properties and unaffordable compounds, requires many steps to accomplish the experimental method. Therefore, this paper employed geothermal solid waste as a silica source of the precursor. Thus, an effective and efficient method was applied to prepare superhydrophobic coating by using a precursor of geothermal silica and further modification using hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The research was executed by the full factorial statistical method using two numerical variables (HMDS/TMCS concentration and silica concentration) and one categorical variable (solvent types). The uncoated material revealed higher weight gain in mass and moisture content than that of the coated bamboo after the soil burial test to assess the durability of the bamboo. However, the durability of superhydrophobic coating realized hydrophobic performance for both agents during sand abrasion for a total of 120 s at an angle of 45°. Statistical results showed the optimum contact angle (CA) achieved in superhydrophobic performance with lower silica concentration for HMDS concentration and the appropriate solvent of n-hexane for HMDS and iso-octane for TMCS. All results were supported using many instruments of analysis to confirm the step-by-step alteration of geothermal silica to be used as a superhydrophobic coating, such as XRF, XRD, FTIR, SEM, and SEM EDX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA