Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(18): 7120-7129, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476902

RESUMO

Reaction of an amido pincer complex [(CNC)*Rh(CO)] (1) (CNC* is the deprotonated form of CNC) with carbon dioxide gave a neutral complex [(CNC-CO2)Mes*Rh(CO)] (2), which is the result of a C-C bond-forming reaction between the deprotonated arm of the CNC* ligand and CO2. The molecular structure of 2 showed a zwitterionic complex, where the CO2 moiety is covalently connected to the former ═CH arm of the CNC* pincer ligand. The unusual structure of 1 allowed us to explore the reactivity of the CO2 moiety with selected primary amines RNH2 (benzylamine and ammonia), which afforded cationic complexes [(CNC)MesRh(CO)][HRNC(O)O] (R = Bz (3), H (4)). Compounds 3 and 4 are the result of a C-N coupling between the incoming amine and the CO2 fragment covalently connected to the pincer ligand in 2, a process that involves protonation of the "CH-CO2" fragment in 2 from the respective amines. Once revealed the nucleophilic character of the ═CH fragment in 1, we explored its reactivity with alkynes, a study that enlightened a novel reactivity trend in alkyne activation. Reaction of 1 with terminal alkynes RC≡CH (R = Ph, 2-py, 4-C6H4-CF3) yielded neutral complexes [(CNC-CH═CHR)Mes*Rh(CO)] (R = Ph (5), 2-py (6), 4-C6H4-CF3 (7)) in good yields. Deuterium labeling experiments with PhC≡CD confirmed that complex 5 is the product of a formal insertion of the alkyne into the C(sp2)-H bond of the deprotonated arm in 1. This structural proposal was further confirmed by the X-ray molecular structure of phenyl complex 5, which showed the alkyne covalently linked to the pincer ligand. Besides, this novel transformation was analyzed by DFT methods and showed a metal-ligand cooperative mechanism, based on the initial electrophilic attack of the alkyne to the ═CH arm of the CNCMes* ligand (making a new C-C bond) followed by the action of a protic base (HN(SiMe3)2), which is able to perform a proton rearrangement that leads to the final product 5.

2.
ACS Nano ; 14(7): 8707-8715, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32441922

RESUMO

We combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to 1.4 GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field. Drops of free-radical molecules have been deposited from solution onto the circuits. For the smallest ones, the molecules were delivered at the relevant circuit areas by means of an atomic force microscope. The number of spins Neff effectively coupled to each device was accurately determined combining Scanning Electron and Atomic Force Microscopies. The collective spin-photon coupling constant has been determined for samples with Neff ranging between 2 × 106 and 1012 spins, and for temperatures down to 44 mK. The results show the well-known collective enhancement of the coupling proportional to the square root of Neff. The average coupling of individual spins is enhanced by more than 4 orders of magnitude (from 4 mHz up to above 180 Hz), when the transmission line width is reduced from 400 µm down to 42 nm, and reaches maximum values near 1 kHz for molecules located on the smallest nanoconstrictions.

3.
Nat Chem Biol ; 16(3): 351-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932717

RESUMO

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.


Assuntos
Fatores de Crescimento de Fibroblastos/química , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Células CHO , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos , Isoenzimas/metabolismo , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Treonina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA