Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Commun (Camb) ; 59(66): 10020-10023, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37525956

RESUMO

The first example of a metalloligand(ML)-based non-interpenetrated SIFSIX MOF [Cu(ML)2(SiF6)]n (ML = Cu(pyac)2 = bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)) exhibits one-dimensional pore channels decorated with accessible Cu2+ sites that provide superior water vapor stability and CO2 selectivity over CH4vs. similar materials constructed from non-metal containing organic ligands.

3.
J Magn Reson ; 293: 34-40, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890484

RESUMO

A small flip-angle pulse direct polarization is the simplest method commonly used to quantify various compositions in many materials applications. This method sacrifices the sensitivity per scan in exchange for rapid repeating of data acquisition for signal accumulation. In addition, the resulting spectrum often encounters artifacts from background signals from probe components and/or from acoustic rings leading to a distorted baseline, especially in low-γ nuclei and wideline NMR. In this work, a multi-acquisition scheme is proposed to boost the sensitivity per scan and at the same time effectively suppress these artifacts. Here, an adiabatic inversion pulse is first applied in order to bring the magnetization from the +z to -z axis and then a small flip-angle pulse excitation is used before the data acquisition. Right after the first acquisition, the adiabatic inversion pulse is applied again to flip the magnetization back to the +z axis. The second data acquisition takes place after another small flip-angle pulse excitation. The difference between the two consecutive acquisitions cancels out any artifacts, while the wanted signals are accumulated. This acquisition process can be repeated many times before going into next scan. Therefore, by acquiring the signals multiple times in a single scan the sensitivity is improved. A mixture sample of flufenamic acid and 3,5-difluorobenzoic acid and a titanium silicate sample have been used to demonstrate the advantages of this newly proposed method.

4.
Environ Sci Technol ; 51(20): 11820-11828, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28892369

RESUMO

Predicting adsorption of organic pollutants onto carbon nanomaterials (CNMs) and understanding the adsorption mechanisms are of great importance to assess the environmental behavior and ecological risks of organic pollutants and CNMs. By means of density functional theory (DFT) computations, we investigated the adsorption of 38 organic molecules (aliphatic hydrocarbons, benzene and its derivatives, and polycyclic aromatic hydrocarbons) onto pristine graphene in both gaseous and aqueous phases. Polyparameter linear free energy relationships (pp-LFERs) were developed, which can be employed to predict adsorption energies of aliphatic and aromatic hydrocarbons on graphene. Based on the pp-LFERs, contributions of different interactions to the overall adsorption were estimated. As suggested by the pp-LFERs, the gaseous adsorption energies are mainly governed by dispersion and electrostatic interactions, while the aqueous adsorption energies are mainly determined by dispersion and hydrophobic interactions. It was also revealed that curvature of single-walled carbon nanotubes (SWNTs) exhibits more significant effects than the electronic properties (metallic or semiconducting) on gaseous adsorption energies, and graphene has stronger adsorption abilities than SWNTs. The developed models may pave a promising way for predicting adsorption of environmental chemicals onto CNMs with in silico techniques.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Adsorção , Água
5.
Dalton Trans ; 45(43): 17168-17178, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27722350

RESUMO

Aiming to elucidate guest-induced structural changes in the coordination polymer CPL-2, grand canonical Monte Carlo (GCMC) simulations were used to predict CO2 loadings in this material, and the results were compared with experimental isotherms. Our calculations suggest that CPL-2 exhibits more pronounced CO2-induced structural changes than previously reported. As the initial evidence, the isotherm simulated in the previously reported CPL-2 structure (experimentally resolved from X-ray diffraction in the "as-synthesized" CPL-2) underestimated the measured CO2 loadings at high pressure, indicating that CPL-2 might undergo structural changes that enable higher pore volumes at high pressure. GCMC simulations in CPL-2 structures considering moderate unit cell expansions reported in the literature still underestimated high-pressure experimental loadings. However, considering an incremental rotation of the CPL-2 bipyridyl pillars with increasing CO2 pressure, we were able to trace the measured isotherm with the simulation data. Computational analysis shows that ligand rotation in CPL-2 enables higher pore volumes, which, in turn, accommodate more CO2 as the gas pressure increases. Desorption measurements suggest that hysteresis in the CO2 isotherm of CPL-2 may also be linked to ligand rotation, and the measured adsorption/desorption cycles show that the rotation is reversible. Based on our simulations for CPL-4 and CPL-5 and previously reported experimental data, it is likely that these materials, which differ from CPL-2 in the bipyridyl ligand, behave similarly in the presence of CO2. Our results help understand the behavior of these materials, which present the kind of structural changes that could be potentially exploited to enhance the CO2 working capacity of ultra-microporous materials for carbon capture applications.

6.
J Hazard Mater ; 312: 262-271, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037481

RESUMO

Pillared clay based composites containing transition metals and a surfactant, namely MAlOr-NaBt (Bt=bentonite; Or=surfactant; M=Ni(2+), Cu(2+)or Co(2+)), were prepared to study selectivity and capacity toward single and multiple-component adsorption of bisphenol A (BPA) and 2,4-diclorophenol (DCP) from water. Tests were also performed to account for the presence of natural organic matter in the form of humic acid (HA). Equilibrium adsorption capacities for single components increased as follows: NaBt

7.
Dalton Trans ; 44(7): 3399-409, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25601767

RESUMO

Inspired by the stepwise addition of octanuclear iron units into mammalian ferritin, a "stop-and-go" synthesis strategy was used to prepare two microporous (Langmuir surface area, 490 m(2) g(-1); effective pore size, 4-5 Å) hierarchical materials {[Fe8(µ4-O)4(µ-pz)12Cl0.3(µ-O)1.85}n () and {[Fe8(µ4-O)4(µ-4-Me-pz)12Cl0.4(µ-O)1.8}n (), which are new members of the EO2 family of polymeric materials (E = C, Si and Ge). The secondary building units (SBUs) E = [Fe8(µ4-O)4(µ-4-R-pz)12] (Fe8) are nanoscale pseudo-spherical clusters, rather than single atoms, forming µ-oxo Fe-O-Fe linkages between Fe8-SBUs. The characteristic Fe-O-Fe asymmetric stretching mode in the infrared (IR) spectra of these compounds appearing at around 800 cm(-1) suggest the formation of approximately linear µ-oxo Fe-O-Fe linkages between Fe8-SBUs in and . We employ the concept of continuous random network (CRN) to describe for the first time the framework features of a Fe8-based amorphous materials, in which the average connecting numbers of each Fe8-cluster are ∼3.7 and ∼3.6 for and , respectively. (57)Fe-Mössbauer spectroscopic analysis provides insights to the intercluster connectivity of and on one hand and to their magnetic properties on the other, evident by a magnetic split sextet below 30 K. The combination of Mössbauer spectroscopy and magnetism measurements reveals a spin-glass behavior with Tg of ∼30 K. The hierarchical porous materials and straddle the gap between metal oxides and metal-organic frameworks (MOFs). This study may open an alternative way for the development of multifunctional materials based on high nuclearity metal clusters.

9.
J Hazard Mater ; 282: 174-82, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24680542

RESUMO

Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts.


Assuntos
Bentonita/química , Cobalto/química , Cobre/química , Níquel/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Adsorção , Cafeína/química , Carbamazepina/química , Ácido Clofíbrico/química , Ácido Salicílico/química , Purificação da Água/métodos
10.
Dalton Trans ; 43(28): 10877-84, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24901071

RESUMO

The present study focuses on the long-range structural changes that occur in the porous coordination polymer Cu2(pzdc)2(bpy) (pzdc = pyrazine-2,3-dicarboxylate, bpy = 4,4'-bipyridine), also known as CPL-2, upon adsorption of CO2 at 25 °C and up to 7 atm. The structural data were gathered using in situ diffraction studies. CPL-2 exhibited an unexpected hysteretic adsorption-desorption process. The onset of hysteresis occurs at a pressure where full occupancy of the volume of the CPL-2 galleries is achieved while the framework retains a structure similar to what is observed under ambient conditions. Moreover, the onset occurs at a CO2 partial pressure larger than 2 atm and could be related to a combination of adsorbate-adsorbent interactions and forces exerted onto the CPL-2 framework. Pore volumes estimated from fits of the Dubinin-Astakhov isotherm model against the CO2 desorption data gathered at 25 and -78.5 °C, respectively, provided further evidence of the aforementioned CPL-2 framework changes. These findings are of relevance to the understanding of adsorption processes in metal organic frameworks or coordination polymers under conditions that are of relevance to gas capture at industrial scale.

11.
J Colloid Interface Sci ; 386(1): 381-91, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22889623

RESUMO

Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate.


Assuntos
Silicatos de Alumínio/química , Cafeína/química , Carbamazepina/química , Ácido Clofíbrico/química , Ácido Salicílico/química , Elementos de Transição/química , Água/química , Adsorção , Argila , Propriedades de Superfície
12.
Dalton Trans ; 41(29): 8922-30, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22714718

RESUMO

In situ high temperature X-ray diffraction, nitrogen porosimetry and gas adsorption at room temperature were used to elucidate the effect of the degassing or activation temperature on the long-range and micropore textural properties of a series of coordination polymers with pillared-layer structures. Ramp-and-soak thermal gravimetric analysis performed at selected activation temperatures were used to verify the thermal stability of a CPL-n series [Cu(2)(pzdc)(2)L; pzdc = pyrazine-2,3-dicarboxylate; L = 4,4-azopyridine (apy) for CPL-4, 1,2-di-(4-pyridil)-ethylene (bpe) for CPL-5, N-(4-pyridyl)-isonicotinamide (pia) for CPL-6, and 1,2-di-(4-pyridyl)-glycol (dpyg) for CPL-7]. Although the activation temperatures were far below the decomposition point of the complexes, these resulted in significant and unique changes in micropore surface area and volume, even for CPL-4, -5 and -6, which contained pillar ligands with similar dimensions and similar structural long-range order. For the case of CPL-7, however, the framework appeared to be non-porous at any given activation temperature. Pure component equilibrium adsorption data gathered for CO(2), CH(4), and N(2) were used to elucidate the CPL-n materials potential for storage and separations at room temperature. All of the materials exhibited considerable selectivity toward CO(2), particularly at moderate pressures. Meanwhile, CO(2) isosteric heats of adsorption indicated that the pore functionalities arising from the pillar ligands provided similar interactions with the adsorbate in the cases of CPL-4 and -5. For CPL-6, the presence of the carbonyl (C[double bond, length as m-dash]O) group appeared to enhance interactions with CO(2) at low loadings.

13.
Dalton Trans ; 40(14): 3547-52, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369563

RESUMO

The thermally induced contraction process of a titanosilicate prepared with tetraethylammonium hydroxide and ion exchanged with Sr(II) (Sr-UPRM-5) after detemplation has been characterized via in situ high temperature X-ray diffraction (XRD) and (29)Si magic angle spinning nuclear magnetic resonance (MAS NMR). The as-synthesized material was prepared via conventional and microwave-assisted hydrothermal methods, the latter resulting in a reaction time an order of magnitude shorter than the former case. In situ high temperature XRD tests performed on Sr-UPRM-5 indicate that at 120 °C, water coordinated to the structure is released initiating the collapse of the framework. At much higher temperatures, the material eventually becomes an amorphous phase. Indexing of the XRD patterns indicates that lattice constant a was more affected by the heat treatment, probably related to the material's pore system, while the unit cell volume experienced a 44% reduction. (29)Si MAS NMR analyses for as-synthesized UPRM-5 confirmed two different silicon environments: Si(2Si, 2Ti(octa)) and Si(3Si, 1Ti(semi-octa)), which are similar to those exhibited by titanosilicate ETS-4. On the other hand, in situ high temperature (29)Si MAS NMR analyses for Sr-UPRM-5 demonstrated that changes in the silicon environment due to the presence of titanium centers possessing additional multiple coordination states, which arise from elimination of framework coordinated water molecules, are responsible for the structure collapsing. In general, these results underline the importance of avoiding complete removal of tenacious water molecules in order to preserve the Sr-UPRM-5 properties suitable for adsorption and catalysis applications.

15.
J Am Chem Soc ; 126(4): 992-3, 2004 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-14746446

RESUMO

Desulfurization of a commercial diesel fuel by vapor-phase ion exchange (VPIE) copper(I) faujasite zeolites was studied in a fixed-bed adsorber operated at ambient temperature and pressure. The zeolite adsorbed approximately five thiophenic molecules per unit cell. After treating 18 cm3 of fuel, the cumulative average sulfur concentration detected was 0.032 ppmw-S. GC-FPD results showed that the pi-complexation sorbents selectively adsorbed highly substituted thiophenes, benzothiophenes, and dibenzothiophenes from diesel, which is not possible by using conventional hydrodesulfurization (HDS) reactors. The high sulfur selectivity and high sulfur capacity of the VPIE Cu(II)-zeolites were due to pi-complexation.

16.
Science ; 301(5629): 79-81, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12843388

RESUMO

Deep desulfurization of transportation fuels (gasoline, diesel, and jet fuels) is being mandated by U.S. and foreign governments and is also needed for future fuel cell applications. However, it is extremely difficult and costly to achieve with current technology, which requires catalytic reactors operated at high pressure and temperature. We show that Cu+ and Ag+ zeolite Y can adsorb sulfur compounds from commercial fuels selectively and with high sulfur capacities (by pi complexation) at ambient temperature and pressure. Thus, the sulfur content was reduced from 430 to <0.2 parts per million by weight in a commercial diesel at a sorbent capacity of 34 cubic centimeters of clean diesel produced per gram of sorbent. This sulfur selectivity and capacity are orders of magnitude higher than those obtained by previously known sorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA