RESUMO
The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.
Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismoRESUMO
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
RESUMO
Our work shows that in multiphase systems, it is more important to take into account the mass transfer of oil rather than that of just oxygen. The oxygen volumetric transfer coefficient is important in aerobic bioreactor design. However, in multiphase systems with non-soluble substrates, oil transfer can impose larger restrictions but is usually not considered. Emulsification and surface tension could play an important role due to effects on oil droplet size and interfacial transfer area. Petroleum oil and is derivates such as diesel can negatively affect living organisms. This study evaluated the effects of the volumetric transfer coefficients (kLa) of hydrocarbons and oxygen on the production of an oil-degrading consortium in an airlift bioreactor relative to emulsifying activity and surface tension, which play important roles in the biodegradation of non-soluble substrates such as diesel due to a combined mass transfer constraint. Our results showed a clear difference in kLa values, which ranged from 15 to 91 h-1 for oxygen and from 0 to 0.0014 h-1 for diesel. Most aerobic biodegradation studies focus on the oxygen volumetric transfer coefficient (kLaoxygen), but our results indicated that non-soluble constraints, such as the volumetric transfer coefficient of diesel (kLadiesel), could be more important. Additionally, d32diesel decreased as superficial gas velocity (Ug) increased. Lower Ug rates (0.15 cm s-1) resulted in higher values of d32diesel (0.38 cm-1), whereas higher Ug rates (2.7 cm s-1) resulted in lower values of d32diesel (0.21 cm-1) at the beginning of the cultivation.
RESUMO
Bladder cancer (BC) is the most common neoplasm of the urinary tract, which originates in the epithelium that covers the inner surface of the bladder. The molecular BC profile has led to the development of different classifications of non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). However, the genomic BC landscape profile of the Mexican population, including NMIBC and MIBC, is unknown. In this study, we aimed to identify somatic single nucleotide variants (SNVs) and copy number variations (CNVs) in Mexican patients with BC and their associations with clinical and pathological characteristics. We retrospectively evaluated 37 patients treated between 2012 and 2021 at the National Cancer Institute-Mexico (INCan). DNA samples were obtained from paraffin-embedded tumor tissues and exome sequenced. Strelka2 and Lancet packages were used to identify SNVs and insertions or deletions. FACETS was used to determine CNVs. We found a high frequency of mutations in TP53 and KMT2D, gains in 11q15.5 and 19p13.11-q12, and losses in 7q11.23. STAG2 mutations and 1q11.23 deletions were also associated with NMIBC and low histologic grade.
Assuntos
Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA , Proteínas de Neoplasias , Neoplasias da Bexiga Urinária , Humanos , México , Mutação , Invasividade Neoplásica , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/genéticaRESUMO
Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.
Assuntos
Distonia , Inibidores da Protease de HIV , Animais , Encéfalo/diagnóstico por imagem , Distonia/tratamento farmacológico , Camundongos , Chaperonas Moleculares , Fenótipo , RitonavirRESUMO
The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.
Assuntos
Neurônios Colinérgicos/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Estresse Fisiológico , Potenciais de Ação , Animais , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Plasticidade Neuronal , Técnicas de Patch-Clamp , Biossíntese de Proteínas , Receptores de Dopamina D2/metabolismoRESUMO
Efforts aimed at reduction of fishing waste generated during the evisceration and filleting are scarce. The fishing waste is used in the production of low value-added products, such as flours or silages. It is important to visualize an alternative and profitable use of this waste, as it constitutes a serious environmental problem. This research determined the antioxidant properties of collagenous extracts of skin and galls of Oreochromis sp. The raw materials were characterized by proximal chemical analysis. Three treatments were applied to extract the collagen: salt-soluble collagen, acid-soluble collagen (ASC), and pepsin-hydrolyzed collagen (PHC). The collagenous fractions were hydrolyzed (0.1% pepsin). The recovered collagen yield and antioxidant activity were determined to hydrolyzed collagen (HC) and nonhydrolyzed collagen (NHC). The ASC skin showed the highest extraction yield (3.02%). For galls, only the PHC extraction was feasible (0.16%). Antioxidant analysis of NHC did not reveal radical scavenging activities. HC displayed a 2,2-diphenyl-1-picrylhydrazyl %RSA of 22.58 (ASC skin) and 10.34% (PHC galls), and a 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid] %RSA of 30.40% (PHC skin) and 29.43% (PHC galls), respectively. The ASC skin and PHC gall extracts exhibited 94.40% and 81.54% in ferric-reducing antioxidant power, and 43.63 and 38.08 µg ascorbic acid equivalents per milli liter for total antioxidant capacity, respectively. The collagen extracts showed %RSA and chelation of pro-oxidant metal ions. Different mechanism of antioxidant action was identified for the extracts: radical scavengers for HC and metal ion chelators for NHC. In conclusion, red tilapia skin collagen is recommended as an active ingredient of nutraceuticals, pharmaceuticals, or functional foods, for the identified bioactive properties.
Assuntos
Antioxidantes/química , Colágeno/química , Proteínas de Peixes/química , Brânquias/química , Pele/química , Resíduos/análise , Animais , Antioxidantes/isolamento & purificação , Ciclídeos , HidróliseRESUMO
The aim of the present study was to evaluate the potential of oils from agricultural residues, such as Mangifera indica L. (mango) and Carica papaya (papaya) from the Papaloapan region, Mexico, as a carbon source for the production of hydrocarbon-degrading (hydrocarbonoclastic) microorganisms in an airlift bioreactor via a common metabolic pathway for hydrocarbons and fatty acids. Biomass growth and carbon source uptake were measured using optical density and gas chromatography, respectively. Gompertz, logistic, and Von Bertalanffy mathematical models were used to obtain kinetic parameters such as the lag phase, maximum specific growth, and consumption rate. The hydrocarbonoclastic consortium was able to grow using papaya (6.09 ± 0.23 g L-1) and mango (2.59 ± 0.30 g L-1) oils, which contain certain antibacterial fatty acids. Differences observed in maximum specific growth and consumption rates indicate that, although mango oil was consumed faster (0.33 day-1 for mango and 0.25 day-1 for papaya), papaya oil provided a higher rate of biomass production per microorganism (0.24 day-1 for mango and 0.44 day-1 for papaya). Additionally, the consortium was able to consume 13 g L-1 diesel as a sole carbon source and improve its maximum specific consumption rate following growth using the oils. Furthermore, the maximum specific growth rate was decreased, indicating a change in the consortium capabilities. Nevertheless, agricultural waste oils from the Papaloapan region can be used to cultivate hydrocarbonoclastic microorganisms. The present study creates the possibility of investigating carbon sources other than hydrocarbons for the production of hydrocarbonoclastic microorganisms.
RESUMO
Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson's disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20-40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.
Assuntos
Potenciais de Ação , Benzazepinas/toxicidade , Antagonistas de Dopamina/toxicidade , Doença de Parkinson/etiologia , Substância Negra/efeitos dos fármacos , Sulpirida/toxicidade , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Camundongos , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologiaRESUMO
Recently, Wallace et al. (2017) provide an unprecedented view of the layers of molecular, cellular and circuit complexity involving a basal ganglia output structure, the entopeduncular nucleus. Their findings lend order to chaos by revealing how molecularly and functionally defined cellular subsets are organized into distinct circuitry.
Assuntos
Gânglios da Base , Núcleo Entopeduncular , LógicaRESUMO
Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.
Assuntos
Distonia/genética , Distúrbios Distônicos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Modelos Animais de Doenças , Distonia/metabolismo , Distonia Muscular Deformante/genética , Distúrbios Distônicos/metabolismo , Genômica , Células HEK293 , Humanos , Camundongos , Chaperonas Moleculares/genética , Plasticidade Neuronal , Transdução de Sinais , Torcicolo/genéticaRESUMO
Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance of rebound APs, sag inward rectification, spike frequency adaptation and spontaneous synaptic potentials. Upon challenge with kainate, GDNF-overexpressing cells are more resistant to excitotoxicity than control MNs. Together these data indicate that GDNF promotes proliferation of MN-committed precursors, promotes neuronal differentiation, enhances maturation, and confers neuroprotection. GDNF-expressing ESC can be useful in studies of development and disease.
RESUMO
Thermotolerance of the fungus Fomes sp. EUM1 was evaluated in solid state fermentation (SSF). This thermotolerant strain improved both hyphal invasiveness (38%) and length (17%) in adverse thermal conditions exceeding 30°C and to a maximum of 40°C. In contrast, hyphal branching decreased by 46% at 45°C. The production of cellulases over corn stover increased 1.6-fold in 30°C culture conditions, xylanases increased 2.8-fold at 40°C, while laccase production improved 2.7-fold at 35°C. Maximum production of lignocellulolytic enzymes was obtained at elevated temperatures in shorter fermentation times (8-6 days), although the proteases appeared as a thermal stress response associated with a drop in lignocellulolytic activities. Novel and multiple isoenzymes of xylanase (four bands) and cellulase (six bands) were secreted in the range of 20-150 kDa during growth in adverse temperature conditions. However, only a single laccase isoenzyme (46 kDa) was detected. This is the first report describing the advantages of a thermotolerant white-rot fungus in SSF. These results have important implications for large-scale SSF, where effects of metabolic heat are detrimental to growth and enzyme production, which are severely affected by the formation of high temperature gradients.
Assuntos
Coriolaceae/enzimologia , Fermentação , Resposta ao Choque Térmico , Adaptação Biológica , Celulase/biossíntese , Celulase/metabolismo , Celulases/biossíntese , Celulases/metabolismo , Coriolaceae/crescimento & desenvolvimento , Coriolaceae/metabolismo , Meios de Cultura/química , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/metabolismo , Temperatura Alta , Hifas/fisiologia , Isoenzimas , Lacase/biossíntese , Lacase/metabolismo , Lignina/metabolismo , Zea mays/metabolismoRESUMO
The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.
Assuntos
Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores , Receptor Muscarínico M1/metabolismo , Sinapses/metabolismo , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Globo Pálido/citologia , Peptídeos e Proteínas de Sinalização Intercelular , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Peptídeos/farmacologia , Pirenzepina/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/fisiologiaRESUMO
THE QUESTION TO SOLVE IN THE PRESENT WORK IS: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.
RESUMO
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.