Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Appl Microbiol ; 127(4): 1255-1269, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309647

RESUMO

AIMS: To determine the seasonal occurrence and diversity of norovirus (NoV) and human adenovirus (HAdV) in groundwater from sinkholes, and brackish water used for recreational activities in the karst aquifer of the Yucatan Peninsula, Mexico. METHODS AND RESULTS: Hollow fibre ultrafiltration was used to concentrate viruses and standard plaque assay methods were used to enumerate somatic and F+ specific coliphages as viral indicators. Real-time quantitative polymerase chain reaction assays were used to estimate the number of genome copies for NoV strains GI, and GII, and HAdVs. The predominant NoV genotypes and HAdV serotypes were identified by comparative sequence analysis. Somatic and male F+ specific coliphages were detected at concentrations up to 94 and 60 plaque-forming units per 100 ml respectively. The NoV genogroup I (GI) was associated with 50% of the sampled sites during the rainy season only, at concentrations ranging from 120 to 1600 genome copies per litre (GC l-1 ). The NoV genogroup II (GII) was detected in 30 and 40% of the sampled sites during the rainy and dry seasons, respectively, at concentrations ranging from 10 to 290 GC l-1 . During the rainy and dry seasons, HAdVs were detected in 20% of the sites, at concentrations ranging from 24 to 690 GC l-1 . Identification of viral types revealed the presence of NoV GI.2, GII.Pe, GII.P16 and GII.P17, and HAdV F serotypes 40 and 41. CONCLUSIONS: These findings demonstrate that NoVs and HAdVs are prevalent as virus contaminants in the karst aquifer, representing potential health risks particularly during the rainy season, in one of the most important areas used for tourism in Mexico. SIGNIFICANCE AND IMPACT OF THE STUDY: This is one of the few studies conducted in karst aquifers that provide a foundational baseline of the distribution, concentrations and diversity of NoVs and HadVs in these particular environments.


Assuntos
Adenovírus Humanos , Água Subterrânea/virologia , Norovirus , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/isolamento & purificação , México , Norovirus/classificação , Norovirus/genética , Norovirus/isolamento & purificação , Microbiologia da Água
3.
Arch Virol ; 155(10): 1571-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20574644

RESUMO

Rhynchosia minima (L.) DC. (Fabaceae) plants exhibiting bright golden mosaic symptoms were previously associated with begomovirus infection in Yucatan, México [1]. To characterize the begomovirus infecting these plants, the complete bipartite genome was cloned and sequenced. Sequence comparisons indicated that the virus was distinct from all other begomoviruses known to date, including those previously identified from symptomatic R. minima, and the name Rhynchosia yellow mosaic Yucatan virus (RhYMYuV) is proposed. Pairwise comparisons indicated that RhYMYuV DNA-A [2,597 nt, (EU021216)] and DNA-B [2,542 nt, (FJ792608)] components shared the highest nt sequence identity with Cabbage leaf curl virus (CaLCuV), 87% for component A and 71% for component B. Phylogenetic analysis indicated that both components of RhYMYuV are most closely related to other New World begomoviruses, having as closest relatives immediate outliers to the major Squash leaf curl virus (SLCV) clade. Recombination analysis of the RhYMYuV genome indicated that the DNA-A component has arisen through intermolecular recombination. R. minima plants inoculated with the monomeric clones developed a bright yellow mosaic similar to symptoms observed in naturally infected plants, confirming that the clones were infectious. Nicotiana benthamiana plants biolistically inoculated with monomeric clones developed curling and chlorosis in the newly emerging leaves. RhYMYuV was also detected in symptomatic Desmodium sect. Scorpiurus Benth. (Fabaceae) that were collected near the RhYMYuV-infected plants.


Assuntos
Begomovirus/isolamento & purificação , Fabaceae/virologia , Doenças das Plantas/virologia , Begomovirus/classificação , Begomovirus/genética , Clonagem Molecular , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Genoma Viral , México , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Nicotiana/virologia
4.
Plant Dis ; 94(7): 924, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30743573

RESUMO

During the okra growing season from August to November of 2009, symptoms reminiscent of geminivirus infection were observed on 75% of 'Green Emerald' Abelmoschus esculentus (L.) Moench, plants in a 0.2-km2 field in Hidalgo County, TX. Visible symptoms consisted of irregular yellow patches on leaves, distinctive yellow borders on leaf edges, and chlorosis of subsequently developing leaves. The whitefly vector of begomoviruses, Bemisia tabaci (Genn.), infested okra plants in the early growth stages during late July 2009. Total DNA was isolated from the leaves of three symptomatic okra plant samples (1) and used as the PCR template to amplify a 575-bp fragment of the coat protein gene (CP) using the universal begomovirus primers AV494 and AC1048 (2). PCR products of the expected size were cloned into the pGEM-T Easy (Promega, Madison, WI) and sequenced using the universal M13F and M13 R primers. ClustalV alignment indicated 99 to 100% shared nucleotide (nt) identity, and BLAST analysis revealed that the closest relative was Okra yellow mosaic Mexico virus - Tetekalitla (OkYMMV) (GenBank Accession No. EF591631) at 98%. To amplify the full-length DNA-A and a possible cognate DNA-B component, one plant that was positive by CP-PCR and DNA sequencing was selected for further analysis. Total DNA from this plant was used as template for a second detection method that consisted of rolling circle amplification (RCA) using the TempliPhi 100 Amplification System (GE Healthcare). RCA is a non-sequence-specific approach that permits amplification of circular DNA. The RCA products were linearized to release unit length ~2.6 kb DNA-A and DNA-B components using BamHI, and EcoRI, respectively. These products were cloned into pGEM3zf+ (Promega) and sequenced using M13F and M13 R primers and then by primer walking (>300 base overlap). Full-length DNA-A and DNA-B components were obtained, respectively, at 2,613 bp (GenBank Accession No. HM035059) and 2,594 bp (GenBank Accession No HM035060). Alignment of the DNA-A component using ClustalV (MegAlign, DNASTAR, Madison, WI) with begomoviral sequences available in GenBank indicated that it was 99% identical to OkYMMV DNA-A (GenBank Accession No. DQ022611). The closest relative to the DNA-B component (ClustalV) was Sida golden mosaic virus (SiGMV) (GenBank Accession No. AJ250731) at 73%. The nt identity of the 172-nt 'common region' present in the DNA-A and DNA-B components was 99%, and the iterons (predicted Rep binding motif) were identical for the two components, indicating that they are a cognate pair. The genome organization was typical of other New World bipartite begomoviruses. The economic losses due to infection by this virus could not be determined because an early freeze killed the plants. Hidalgo County is adjacent to Tamaulipas, Mexico, where ~50 km2 of okra are grown and the whitefly vector is also present. The identification of OkYMMV based on two independent detection methods, and the presence of begomovirus-like symptoms together with the whitefly vector, provide robust evidence for the association of OkYMMV-TX with diseased okra plants. To our knowledge, this is the first report of OkYMMV-TX infecting okra crops in Texas and in the continental United States. References: (1) J. J. Doyle and J. L. Doyle. Focus 12:13, 1990. (2) S. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA