Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Plant Sci ; 2(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25383266

RESUMO

PREMISE OF THE STUDY: Variation in the distribution of methylated CpG (methyl-CpG) in genomic DNA (gDNA) across the tree of life is biologically interesting and useful in genomic studies. We illustrate the use of human methyl-CpG-binding domain (MBD2) to fractionate angiosperm DNA into eukaryotic nuclear (methyl-CpG-rich) vs. organellar and prokaryotic (methyl-CpG-poor) elements for genomic and metagenomic sequencing projects. • METHODS: MBD2 has been used to enrich prokaryotic DNA in animal systems. Using gDNA from five model angiosperm species, we apply a similar approach to identify whether MBD2 can fractionate plant gDNA into methyl-CpG-depleted vs. enriched methyl-CpG elements. For each sample, three gDNA libraries were sequenced: (1) untreated gDNA, (2) a methyl-CpG-depleted fraction, and (3) a methyl-CpG-enriched fraction. • RESULTS: Relative to untreated gDNA, the methyl-depleted libraries showed a 3.2-11.2-fold and 3.4-11.3-fold increase in chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA), respectively. Methyl-enriched fractions showed a 1.8-31.3-fold and 1.3-29.0-fold decrease in cpDNA and mtDNA, respectively. • DISCUSSION: The application of MBD2 enabled fractionation of plant gDNA. The effectiveness was particularly striking for monocot gDNA (Poaceae). When sufficiently effective on a sample, this approach can increase the cost efficiency of sequencing plant genomes as well as prokaryotes living in or on plant tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA