Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep ; 42(8): 112848, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515770

RESUMO

Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.


Assuntos
Lâmina Nuclear , Transcriptoma , Transcriptoma/genética , Células Cultivadas , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Cromatina/metabolismo
2.
Mol Cancer Ther ; 22(5): 630-645, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912782

RESUMO

Antitumor immunity can be hampered by immunosuppressive mechanisms in the tumor microenvironment, including recruitment of arginase (ARG) expressing myeloid cells that deplete l-arginine essential for optimal T-cell and natural killer cell function. Hence, ARG inhibition can reverse immunosuppression enhancing antitumor immunity. We describe AZD0011, a novel peptidic boronic acid prodrug to deliver an orally available, highly potent, ARG inhibitor payload (AZD0011-PL). We demonstrate that AZD0011-PL is unable to permeate cells, suggesting that this compound will only inhibit extracellular ARG. In vivo, AZD0011 monotherapy leads to arginine increases, immune cell activation, and tumor growth inhibition in various syngeneic models. Antitumor responses increase when AZD0011 is combined with anti-PD-L1 treatment, correlating with increases in multiple tumor immune cell populations. We demonstrate a novel triple combination of AZD0011, anti-PD-L1, and anti-NKG2A, and combination benefits with type I IFN inducers, including polyI:C and radiotherapy. Our preclinical data demonstrate AZD0011's ability to reverse tumor immunosuppression and enhance immune stimulation and antitumor responses with diverse combination partners providing potential strategies to increase immuno-oncology therapies clinically.


Assuntos
Arginase , Linfócitos T , Humanos , Linhagem Celular Tumoral , Terapia de Imunossupressão , Tolerância Imunológica , Microambiente Tumoral
3.
Neurochem Res ; 45(3): 606-619, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32020491

RESUMO

Differentiation of oligodendrocytes (OL) from progenitor cells (OPC) is the result of a unique program of gene expression, which is further regulated by the formation of topological domains of association with the nuclear lamina. In this study, we show that cultured OPC were characterized by progressively declining levels of endogenous Lamin B1 (LMNB1) during differentiation into OL. We then identify the genes dynamically associated to the nuclear lamina component LMNB1 during this transition, using a well established technique called DamID, which is based on the ability of a bacterially-derived deoxyadenosine methylase (Dam), to modify genomic regions in close proximity. We expressed a fusion protein containing Dam and LMNB1 in OPC (OPCLMNB1-Dam) and either kept them proliferating or differentiated them into OL (OLLMNB1-Dam) and identified genes that were dynamically associated to LMNB1 with differentiation. Importantly, we identified Lss, the gene encoding for lanosterol synthase, a key enzyme in cholesterol synthesis, as associated to the nuclear lamina in OLLMNB1-Dam. This finding could at least in part explain the lipid dysregulation previously reported for mouse models of ADLD characterized by persistent LMNB1 expression in oligodendrocytes.


Assuntos
Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo
4.
Blood Adv ; 3(22): 3661-3673, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31751472

RESUMO

Acute myeloid leukemias (AML) harboring a constitutively active internal tandem duplication (ITD) mutation in the FMS-like kinase tyrosine kinase (FLT3) receptor are associated with poor patient prognosis. Despite initial clinical responses to FLT3 kinase inhibitors, patients eventually relapse. Mechanisms of resistance include the acquisition of secondary FLT3 mutations and protective stromal signaling within the bone marrow niche. Here we show that LAM-003, a prodrug of the heat shock protein 90 inhibitor LAM-003A, has cytotoxic activity against AML cell lines and primary samples harboring FLT3-ITD. LAM-003 regressed tumors in an MV-4-11 xenograft mouse model and extended survival in a MOLM-13 systemic model. LAM-003 displayed synergistic activity with chemotherapeutic drugs and FLT3 inhibitors, with the most robust synergy being obtained with venetoclax, a BCL-2 inhibitor. This finding was verified in a MOLM-13 systemic survival model in which the combination significantly prolonged survival compared with the single agents. Importantly, LAM-003 exhibited equipotent activity against FLT3 inhibitor-resistant mutants of FLT3, such as D835 or F691, in cytotoxic and FLT3 degradation assays. LAM-003 also retained potency in AML cells grown in stromal-conditioned media that were resistant to FLT3 inhibitors. Lastly, a genome-wide CRISPR screen revealed epigenetic regulators, including KDM6A, as determinants of LAM-003 sensitivity in AML cell lines, leading to the discovery of synergy with an EZH2 inhibitor. Collectively, these preclinical findings support the use of LAM-003 in FLT3-ITD patients with AML who no longer respond to FLT3 inhibitor therapy either as a single agent or in combination with drugs known to be active in AML.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Epigênese Genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
5.
Autophagy ; 13(6): 1082-1083, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350209

RESUMO

We identified the PIKFYVE inhibitor apilimod as a potent and selective cytotoxic agent against B-cell non-Hodgkin lymphoma (B-NHL). Our data robustly establish PIKFYVE as the target through which apilimod kills B-NHL cells and show that apilimod-induced death in B-NHL is mediated by broad disruption of lysosome homeostasis characterized by lysosomal swelling, TFEB nuclear translocation, impaired maturation of lysosomal enzymes and incomplete autophagosome clearance. Furthermore, through genome-wide CRISPR knockout screening, we identified specific lysosomal genes (TFEB, CLCN7, OSTM1 and SNX10) as critical determinants of apilimod-induced cytotoxicity. Together these data highlight disruption of lysosome homeostasis through PIKFYVE inhibition as a novel anticancer mechanism in B-NHL and potentially other cancers.


Assuntos
Linfócitos B/patologia , Linfoma não Hodgkin/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Endossomos/metabolismo , Humanos , Linfoma não Hodgkin/enzimologia , Linfoma não Hodgkin/patologia , Lisossomos/metabolismo , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia
6.
Blood ; 129(13): 1768-1778, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28104689

RESUMO

We identified apilimod as an antiproliferative compound by high-throughput screening of clinical-stage drugs. Apilimod exhibits exquisite specificity for phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) lipid kinase and has selective cytotoxic activity in B-cell non-Hodgkin lymphoma (B-NHL) compared with normal cells. Apilimod displays nanomolar activity in vitro, and in vivo studies demonstrate single-agent efficacy as well as synergy with approved B-NHL drugs. Using biochemical and knockdown approaches, and discovery of a kinase domain mutation conferring resistance, we demonstrate that apilimod-mediated cytotoxicity is driven by PIKfyve inhibition. Furthermore, a critical role for lysosome dysfunction as a major factor contributing to apilimod's cytotoxicity is supported by a genome-wide CRISPR screen. In the screen, TFEB (master transcriptional regulator of lysosomal biogenesis) and endosomal/lysosomal genes CLCN7, OSTM1, and SNX10 were identified as important determinants of apilimod sensitivity. These findings thus suggest that disruption of lysosomal homeostasis with apilimod represents a novel approach to treat B-NHL.


Assuntos
Linfoma de Células B/tratamento farmacológico , Morfolinas/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Triazinas/uso terapêutico , Antineoplásicos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Avaliação Pré-Clínica de Medicamentos/métodos , Endossomos/efeitos dos fármacos , Endossomos/genética , Ensaios de Triagem em Larga Escala , Humanos , Hidrazonas , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Fosfatidilinositol 3-Quinases , Pirimidinas
7.
Curr Opin Neurobiol ; 39: 133-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27308779

RESUMO

Emerging and strengthening evidence suggests an important role of myelin in plasticity and axonal survival. However, the mechanisms regulating progression from oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes remain only partially understood. A series of overlapping yet distinct epigenetic events occur as a proliferating OPC exits the cell cycle, initiates differentiation, and becomes a myelin-forming oligodendrocyte that wraps axons. Here we discuss recent advances towards understanding the epigenetic control of oligodendrocyte development that integrates environmental stimuli. We suggest that OPCs are directly responsive to extrinsic signals due to predominantly euchromatic nuclei, while the heterochromatic nuclei render differentiating and myelinating cells less susceptible to signals modulating the epigenome.


Assuntos
Oligodendroglia/citologia , Axônios/metabolismo , Diferenciação Celular , Epigênese Genética , Humanos , Bainha de Mielina/metabolismo , Células-Tronco/citologia
8.
J Neurosci ; 36(3): 806-13, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791211

RESUMO

Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. Significance statement: It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage.


Assuntos
Núcleo Celular/metabolismo , Epigênese Genética/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Oligodendroglia/fisiologia , Animais , Núcleo Celular/genética , Proteínas do Citoesqueleto , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética
9.
J Neurosci ; 35(34): 12002-17, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311780

RESUMO

Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT: Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.


Assuntos
Envelhecimento/metabolismo , Doenças Desmielinizantes/metabolismo , Lamina Tipo B/biossíntese , Metabolismo dos Lipídeos/fisiologia , Envelhecimento/genética , Animais , Doenças Desmielinizantes/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Oligodendroglia/metabolismo
10.
Glia ; 63(8): 1357-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25970296

RESUMO

The recent years have been characterized by a surge of studies on the role of transcription factors and histone modifications in regulating the progression of progenitors into oligodendrocytes. This review summarizes this body of evidence and presents an integrated view of transcriptional networks and epigenetic regulators defining proliferating progenitors and their differentiation along the oligodendrocyte lineage. We suggest that transcription factors in proliferating progenitors have direct access to DNA, due to predominantly euchromatic nuclei. As progenitors differentiate, however, transcriptional competence is modulated by the formation of heterochromatin, which modifies the association of DNA with nucleosomal histones and renders the access of transcription factors dependent on the activity of epigenetic modulators. These concepts are delineated within the context of development, and the potential functional implications are discussed.


Assuntos
Cromatina/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Epigênese Genética , Humanos , Células-Tronco Neurais/metabolismo
11.
J Neurosci ; 32(19): 6651-64, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573687

RESUMO

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of treated OPCs, revealed that BMP4-inhibition of oligodendrocyte differentiation was accompanied by increased levels of Wnt (Tbx3) and Notch-target genes (Jag1, Hes1, Hes5, Hey1, and Hey2), decreased recruitment of Hdac and increased histone acetylation at these loci. Similar upregulation of Notch-target genes and increased histone acetylation were observed in the corpus callosum of mice infused with BMP4 during cuprizone-induced demyelination. We conclude that Shh and Bmp4 differentially regulate histone acetylation and chromatin structure in OPCs and that BMP4 acts as a potent inducer of gene expression, including Notch and Wnt target genes, thereby enhancing the crosstalk among signaling pathways that are known to inhibit myelination and repair.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Proteínas Hedgehog/fisiologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Oligodendroglia/fisiologia , Transcriptoma/genética , Acetilação , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Inativação Gênica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histonas/antagonistas & inibidores , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Ratos
12.
Proc Natl Acad Sci U S A ; 107(34): 15299-304, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20686112

RESUMO

beta-Arrestin-mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the beta-arrestin-biased ligand Sar(1), Ile(4), Ile(8)-angiotensin (SII), a ligand previously found to signal through beta-arrestin-dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of beta-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the beta-arrestin-mediated phosphoproteome including construction of a kinase-substrate network for beta-arrestin-mediated AT1aR signaling. Our analysis demonstrates that beta-arrestin-dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby beta-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of beta-arrestin-mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area of 7TMR signaling.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Arrestinas/antagonistas & inibidores , Arrestinas/genética , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA Interferente Pequeno/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Biologia de Sistemas , beta-Arrestina 2 , beta-Arrestinas
13.
Artigo em Inglês | MEDLINE | ID: mdl-21552464

RESUMO

Protein phosphorylation is a reversible post-translational modification commonly used by cell signaling networks to transmit information about the extracellular environment into intracellular organelles for the regulation of the activity and sorting of proteins within the cell. For this study we reconstructed a literature-based mammalian kinase-substrate network from several online resources. The interactions within this directed graph network connect kinases to their substrates, through specific phosphosites including kinasekinase regulatory interactions. However, the "signs" of links, activation or inhibition of the substrate upon phosphorylation, within this network are mostly unknown. Here we show how we can infer the "signs" indirectly using data from quantitative phosphoproteomics experiments applied to mammalian cells combined with the literature-based kinase-substrate network. Our inference method was able to predict the sign for 321 links and 153 phosphosites on 120 kinases, resulting in signed and directed subnetwork of mammalian kinase-kinase interactions. Such an approach can rapidly advance the reconstruction of cell signaling pathways and networks regulating mammalian cells.

14.
Nucleic Acids Res ; 37(Web Server issue): W413-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19398430

RESUMO

SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUND-web will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.


Assuntos
Ligantes , Conformação Proteica , Software , Algoritmos , Sítios de Ligação , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA