Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Pharmacol ; 105(3): 131-143, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164625

RESUMO

Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase (CerS) isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. Although the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, although CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting that mice are relevant preclinical models for ceramide and sphingolipid research. SIGNIFICANCE STATEMENT: The current study demonstrates that ceramide synthase (CerS) expression in specific tissues correlates not only with ceramide species but contributes to the generation of complex sphingolipids as well. As many of the CerSs and/or specific ceramide species have been implicated in disease, these studies suggest the potential for CerSs as therapeutic targets and the use of sphingolipid species as diagnostics in specific tissues.


Assuntos
Ceramidas , Oxirredutases , Esfingolipídeos , Camundongos , Animais , Humanos , Lactente , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Ceramidas/genética , Ceramidas/metabolismo , Isoformas de Proteínas , Envelhecimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Pharmacol ; 105(3): 166-178, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164582

RESUMO

Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.


Assuntos
Aciltransferases , Produtos Biológicos , Vias Biossintéticas , Ceramidas/metabolismo , Sistemas de Liberação de Medicamentos
3.
J Lipid Res ; 64(2): 100322, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549592

RESUMO

The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.


Assuntos
Ceramidas , Esfingosina , Ceramidas/metabolismo , Esfingosina/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Lisofosfolipídeos/metabolismo
4.
EMBO J ; 40(20): e107766, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34516001

RESUMO

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldina A/farmacologia , Ceramidas/metabolismo , Toxina da Cólera/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Toxina Shiga/farmacologia
5.
FASEB J ; 35(3): e21396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583073

RESUMO

We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.


Assuntos
Ceramidas/fisiologia , Doxorrubicina/farmacologia , Proteína Fosfatase 1/fisiologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células HeLa , Humanos
6.
Cell Signal ; 79: 109875, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290840

RESUMO

Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.


Assuntos
Envelhecimento/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Envelhecimento/genética , Envelhecimento/patologia , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Laboratórios , Lisofosfolipídeos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Esfingolipídeos/genética , Esfingosina/genética , Esfingosina/metabolismo
7.
FASEB J ; 34(6): 7610-7630, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307766

RESUMO

Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.


Assuntos
Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ceramidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Esfingomielina Fosfodiesterase/metabolismo
9.
J Lipid Res ; 58(7): 1439-1452, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490444

RESUMO

Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/efeitos adversos , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Ceramidas/metabolismo , Córtex Renal/irrigação sanguínea , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Masculino , Camundongos , Ratos , Traumatismo por Reperfusão/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-27697478

RESUMO

Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Animais , Apoptose/fisiologia , Membrana Celular/metabolismo , Ceramidas/metabolismo , Humanos , Mitofagia/fisiologia , Transdução de Sinais/fisiologia
11.
J Biol Chem ; 290(42): 25356-73, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26318452

RESUMO

Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.


Assuntos
Apoptose , Ceramidas/biossíntese , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Oxirredutases/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Caspases/metabolismo , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Fumonisinas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Oxirredutases/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
12.
FASEB J ; 29(11): 4654-69, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209696

RESUMO

The bioactive sphingolipid sphingosine-1-phosphate (S1P) mediates cellular proliferation, mitogenesis, inflammation, and angiogenesis. These biologies are mediated through S1P binding to specific GPCRs [sphingosine-1-phosphate receptor (S1PR)1-5] and some other less well-characterized intracellular targets. Ezrin-radixin-moesin (ERM) proteins, a family of adaptor molecules linking the cortical actin cytoskeleton to the plasma membrane, are emerging as critical regulators of cancer invasion via regulation of cell morphology and motility. Recently, we identified S1P as an acute ERM activator (via phosphorylation) through its action on S1PR2. In this work, we dissect the mechanism of S1P generation downstream of epidermal growth factor (EGF) leading to ERM phosphorylation and cancer invasion. Using pharmacologic inhibitors, small interfering RNA technologies, and genetic approaches, we demonstrate that sphingosine kinase (SK)2, and not SK1, is essential and sufficient in EGF-mediated ERM phosphorylation in HeLa cells. In fact, knocking down SK2 decreased ERM activation 2.5-fold. Furthermore, we provide evidence that SK2 is necessary to mediate EGF-induced invasion. In addition, overexpressing SK2 causes a 2-fold increase in HeLa cell invasion. Surprisingly, and for the first time, we find that this event, although dependent on S1PR2 activation, does not generate and does not require extracellular S1P secretion, therefore introducing a potential novel model of autocrine/intracrine action of S1P that still involves its GPCRs. These results define new mechanistic insights for EGF-mediated invasion and novel actions of SK2, therefore setting the stage for novel targets in the treatment of growth factor-driven malignancies.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Comunicação Autócrina/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Epidérmico/genética , Células HeLa , Humanos , Lisofosfolipídeos/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosforilação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
13.
J Am Soc Nephrol ; 26(6): 1402-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25270066

RESUMO

Nearly one half of patients with lupus develop glomerulonephritis (GN), which often leads to renal failure. Although nephritis is diagnosed by the presence of proteinuria, the pathology of nephritis can fall into one of five classes defined by different forms of tissue injury, and the mechanisms involved in pathogenesis are not completely understood. Glycosphingolipids are abundant in the kidney, have roles in many cellular functions, and were shown to be involved in other renal diseases. Here, we show dysfunctional glycosphingolipid metabolism in patients with lupus nephritis and MRL/lpr lupus mice. Specifically, we found that glucosylceramide (GlcCer) and lactosylceramide (LacCer) levels are significantly higher in the kidneys of nephritic MRL/lpr lupus mice than the kidneys of non-nephritic lupus mice or healthy controls. This elevation may be, in part, caused by altered transcriptional regulation and/or activity of LacCer synthase (GalT5) and neuraminidase 1, enzymes that mediate glycosphingolipid metabolism. We show increased neuraminidase 1 activity early during the progression of nephritis (before significant elevation of GlcCer and LacCer in the kidney). Elevated levels of urinary LacCer were detected before proteinuria in lupus mice. Notably, LacCer levels were higher in the urine and kidneys of patients with lupus and nephritis than patients with lupus without nephritis or healthy controls. Together, these results show early and significant dysfunction of the glycosphingolipid metabolic pathway in the kidneys of lupus mice and patients with lupus nephritis and suggest that molecules in this pathway may serve as early markers in lupus nephritis.


Assuntos
Glicoesfingolipídeos/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Neuraminidase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Análise de Variância , Animais , Biomarcadores/análise , Biópsia por Agulha , Modelos Animais de Doenças , Progressão da Doença , Seguimentos , Humanos , Immunoblotting , Imuno-Histoquímica , Testes de Função Renal , Nefrite Lúpica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Neuraminidase/genética , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Urinálise
14.
Biochem J ; 452(1): 111-9, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23480852

RESUMO

Determining mechanistic details about how drugs kill cancer cells is critical for predicting which cancers will respond to given therapeutic regimens and for identifying effective combinations of drugs that more potently kill cancer cells while sparing normal cells. The BCL2 family of proteins and bioactive sphingolipids are intricately linked during apoptotic cell death. In fact, many chemotherapeutic drugs are known to cause accumulation of the pro-apoptotic sphingolipid ceramide; however, the mechanism by which this occurs is not completely understood. In the present study we demonstrate that direct inhibition of anti-apoptotic BCL2 proteins with ABT-263 is sufficient to induce C(16)-ceramide synthesis in multiple cell lines, including human leukaemia and myeloma cells. ABT-263 activates CerS (ceramide synthase) activity only in cells expressing BAK or in cells capable of activating BAK. Importantly, recombinant BAK is sufficient to increase in vitro CerS activity in microsomes purified from Bak-KO (knockout) cells and activated BAK more potently activates CerS than inactive BAK. Likewise, ABT-263 addition to wild-type, but not Bak-deficient, microsomes increases CerS in vitro activity. Furthermore, we present a feed-forward model by which BAK activation of CerS by chemotherapeutic drugs leads to elevated ceramide levels that result in synergistic channel formation by ceramide (or one of its metabolites) and BAX/BAK.


Assuntos
Ceramidas/metabolismo , Oxirredutases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Compostos de Anilina/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células K562 , Leucemia/enzimologia , Leucemia/metabolismo , Leucemia/patologia , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Sulfonamidas/farmacologia , Células U937 , Proteína Killer-Antagonista Homóloga a bcl-2/antagonistas & inibidores , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência
15.
PLoS One ; 6(6): e20411, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687659

RESUMO

BACKGROUND: Chronic kidney disease and end-stage renal disease are major causes of morbidity and mortality that are seen far more commonly in the aged population. Interestingly, kidney function declines during aging even in the absence of underlying renal disease. Declining renal function has been associated with age-related cellular damage and dysfunction with reports of increased levels of apoptosis, necrosis, and inflammation in the aged kidney. Bioactive sphingolipids have been shown to regulate these same cellular processes, and have also been suggested to play a role in aging and cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that alterations in kidney sphingolipids play a role in the declining kidney function that occurs during aging. To begin to address this, the sphingolipid profile was measured in young (3 mo), middle aged (9 mo) and old (17 mo) C57BL/6 male mice. Interestingly, while modest changes in ceramides and sphingoid bases were evident in kidneys from older mice, the most dramatic elevations were seen in long-chain hexosylceramides (HexCer) and lactosylceramides (LacCer), with C14- and C16-lactosylceramides elevated as much as 8 and 12-fold, respectively. Increases in long-chain LacCers during aging are not exclusive to the kidney, as they also occur in the liver and brain. Importantly, caloric restriction, previously shown to prevent the declining kidney function seen in aging, inhibits accumulation of long-chain HexCer/LacCers and prevents the age-associated elevation of enzymes involved in their synthesis. Additionally, long-chain LacCers are also significantly elevated in human fibroblasts isolated from elderly individuals. CONCLUSION/SIGNIFICANCE: This study demonstrates accumulation of the glycosphingolipids HexCer and LacCer in several different organs in rodents and humans during aging. In addition, data demonstrate that HexCer and LacCer metabolism is regulated by caloric restriction. Taken together, data suggest that HexCer/LacCers are important mediators of cellular processes fundamental to mammalian aging.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Animais , Ceramidas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Especificidade de Órgãos , Oxirredutases/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Adulto Jovem
16.
J Biol Chem ; 285(42): 32476-85, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20679347

RESUMO

ERM proteins are regulated by phosphorylation of the most C-terminal threonine residue, switching them from an activated to an inactivated form. However, little is known about the control of this regulation. Previous work in our group demonstrated that secretion of acid sphingomyelinase acts upstream of ERM dephosphorylation, suggesting the involvement of sphingomyelin (SM) hydrolysis in ERM regulation. To define the role of specific lipids, we employed recombinant bacterial sphingomyelinase (bSMase) as a direct probe of SM metabolism at the plasma membrane. bSMase induced a rapid dose- and time-dependent decrease in ERM dephosphorylation. ERM dephosphorylation was driven by ceramide generation and not by sphingomyelin depletion, as shown using recombinant sphingomyelinase D. The generation of ceramide at the plasma membrane was sufficient for ERM regulation, and no intracellular SM hydrolysis was required, as was visualized using Venus-tagged lysenin probe, which specifically binds SM. Interestingly, hydrolysis of plasma membrane bSMase-induced ceramide using bacterial ceramidase caused ERM hyperphosphorylation and formation of cell surface protrusions. The effects of plasma membrane ceramide hydrolysis were due to sphingosine 1-phosphate formation, as ERM phosphorylation was blocked by an inhibitor of sphingosine kinase and induced by sphingosine 1-phosphate. Taken together, these results demonstrate a new regulatory mechanism of ERM phosphorylation by sphingolipids with opposing actions of ceramide and sphingosine 1-phosphate. The approach also defines a tool kit to probe sphingolipid signaling at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Ceramidas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Ceramidases/metabolismo , Ceramidas/química , Células HeLa , Humanos , Estrutura Molecular , Fosforilação , Esfingolipídeos/química , Esfingosina/metabolismo
17.
J Biol Chem ; 285(16): 11818-26, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20172858

RESUMO

The BCL-2 family members BAK and BAX are required for apoptosis and trigger mitochondrial outer membrane permeabilization (MOMP). Here we identify a MOMP-independent function of BAK as a required factor for long-chain ceramide production in response to pro-apoptotic stress. UV-C irradiation of wild-type (WT) cells increased long-chain ceramides; blocking ceramide generation prevented caspase activation and cell death, demonstrating that long-chain ceramides play a key role in UV-C-induced apoptosis. In contrast, UV-C irradiation did not increase long-chain ceramides in BAK and BAX double knock-out cells. Notably, this was not specific to the cell type (baby mouse kidney cells, hematopoietic) nor the apoptotic stimulus employed (UV-C, cisplatin, and growth factor withdrawal). Importantly, long-chain ceramide generation was dependent on the presence of BAK, but not BAX. However, ceramide generation was independent of the known downstream actions of BAK in apoptosis (MOMP or caspase activation), suggesting a novel role for BAK in apoptosis. Finally, enzymatic assays identified ceramide synthase as the mechanism by which BAK regulates ceramide metabolism. There was no change in CerS expression at the message or protein level, indicating regulation at the post-translational level. Moreover, CerS activity in BAK KO microsomes can be reactivated upon addition of BAK-containing microsomes. The data presented indicate that ceramide-induced apoptosis is dependent upon BAK and identify a novel role for BAK during apoptosis. By establishing a unique role for BAK in long-chain ceramide metabolism, these studies further demonstrate that the seemingly redundant proteins BAK and BAX have distinct mechanisms of action during apoptosis induction.


Assuntos
Apoptose/fisiologia , Ceramidas/biossíntese , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos da radiação , Caspases/metabolismo , Células Cultivadas , Ceramidas/química , Camundongos , Membranas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Permeabilidade , Estresse Fisiológico , Raios Ultravioleta , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA