RESUMO
A synthetic circuit in a biological system involves the designed assembly of genetic elements, biomolecules, or cells to create a defined function. These circuits are central in synthetic biology, enabling the reprogramming of cellular behavior and the engineering of cells with customized responses. In cancer therapeutics, engineering T cells with circuits have the potential to overcome the challenges of current approaches, for example, by allowing specific recognition and killing of cancer cells. Recent advances also facilitate engineering integrated circuits for the controlled release of therapeutic molecules at specified locations, for example, in a solid tumor. In this review, we discuss recent strategies and applications of synthetic receptor circuits aimed at enhancing immune cell functions for cancer immunotherapy. We begin by introducing the concept of circuits in networks at the molecular and cellular scales and provide an analysis of the development and implementation of several synthetic circuits in T cells that have the goal to overcome current challenges in cancer immunotherapy. These include specific targeting of cancer cells, increased T-cell proliferation, and persistence in the tumor microenvironment. By harnessing the power of synthetic biology, and the characteristics of certain circuit architectures, it is now possible to engineer a new generation of immune cells that recognize cancer cells, while minimizing off-target toxicities. We specifically discuss T-cell circuits for antigen density sensing. These circuits allow targeting of solid tumors that share antigens with normal tissues. Additionally, we explore designs for synthetic circuits that could control T-cell differentiation or T-cell fate as well as the concept of synthetic multicellular circuits that leverage cellular communication and division of labor to achieve improved therapeutic efficacy. As our understanding of cell biology expands and novel tools for genome, protein, and cell engineering are developed, we anticipate further innovative approaches to emerge in the design and engineering of circuits in immune cells.
Assuntos
Engenharia Genética , Biologia Sintética , Humanos , Imunoterapia , Linfócitos T , Comunicação CelularRESUMO
Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.
Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologiaRESUMO
Overexpressed tumor-associated antigens [for example, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2)] are attractive targets for therapeutic T cells, but toxic "off-tumor" cross-reaction with normal tissues that express low levels of target antigen can occur with chimeric antigen receptor (CAR)-T cells. Inspired by natural ultrasensitive response circuits, we engineered a two-step positive-feedback circuit that allows human cytotoxic T cells to discriminate targets on the basis of a sigmoidal antigen-density threshold. In this circuit, a low-affinity synthetic Notch receptor for HER2 controls the expression of a high-affinity CAR for HER2. Increasing HER2 density thus has cooperative effects on T cells-it increases both CAR expression and activation-leading to a sigmoidal response. T cells with this circuit show sharp discrimination between target cells expressing normal amounts of HER2 and cancer cells expressing 100 times as much HER2, both in vitro and in vivo.
Assuntos
Engenharia Celular , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Células K562 , Camundongos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptores Artificiais/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Esferoides Celulares , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile biomaterial functionalization platform can provide new opportunities for immunotherapies.
Assuntos
Materiais Biocompatíveis/química , DNA/química , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Nanopartículas/química , Neoplasias/terapia , Proteínas/química , Proteínas/imunologia , Proteínas/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplanteRESUMO
Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport. But the question remains: how is a length-dependent signal produced to regulate intraflagellar transport appropriately? Several conceptual models have been suggested, but testing these models quantitatively requires that they be cast in mathematical form. Here, we derive a set of mathematical models that represent the main broad classes of hypothetical size-control mechanisms currently under consideration. We use these models to predict the relation between length and intraflagellar transport, and then compare the predicted relations for each model with experimental data. We find that three models-an initial bolus formation model, an ion current model, and a diffusion-based model-show particularly good agreement with available experimental data. The initial bolus and ion current models give mathematically equivalent predictions for length control, but fluorescence recovery after photobleaching experiments rule out the initial bolus model, suggesting that either the ion current model or a diffusion-based model is more likely correct. The general biophysical principles of the ion current and diffusion-based models presented here to measure cilia and flagellar length can be generalized to measure any membrane-bound organelle volume, such as the nucleus and endoplasmic reticulum.
Assuntos
Chlamydomonas/fisiologia , Cílios , Modelos Biológicos , Cílios/fisiologia , Difusão , Flagelos/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Íons/metabolismo , Microscopia de Fluorescência , Movimento , Tamanho das Organelas , Especificidade da EspécieRESUMO
BACKGROUND: In 2010, Health Canada, the equivalent to the FDA, reported that the risk of uterine perforation caused by levonorgestrel intrauterine device (IUD) is very serious, warning that its use had increased the number of uterine perforation. CLINICAL CASE: A 33 years old patient in who was placed three years before a levonorgestrel IUD; She presented evolution of 10 days with pain in hypogastric and both flanks and chronic constipation of two years; in exploration: moderate abdominal distention, IUD strings were not visible in uterine cervix. With translocated IUD diagnosis, a tomography was performed, finding IUD in abdominal cavity and ureter pyelocalyceal bilateral ectasia; preoperative plasma concentration of levonorgestrel 5.1 nmol/L, leukocytosis of 11,000 cells/mm3, and 20-30 erythrocytes in urine exam. Laparoscopic resection of omentum attached to IUD translocated was performed. One month after surgery plasma levonorgestrel in 0.3 nmol/L, normal urinalysis and hematic cytometry and resolution of the urinary tract ectasia. CONCLUSIONS: devices translocated with levonorgestrel, must be removed because the inflammatory reaction caused and the perforation of hollow viscera likelihood, with possibility to produce digestive tract and urinary tract ectasia by its pharmacologic action on smooth muscle.
Assuntos
Migração de Corpo Estranho/cirurgia , Dispositivos Intrauterinos Medicados/efeitos adversos , Levanogestrel/administração & dosagem , Adulto , Remoção de Dispositivo , Dilatação Patológica/etiologia , Feminino , Humanos , Cálices Renais/patologia , Pelve Renal/patologia , Laparoscopia/métodos , Tomografia/métodos , Ureter/patologiaRESUMO
The scorpion toxin tamapin displays the most potent and selective blockage against KCa2.2 channels known to date. In this work, we report the biosynthesis, three-dimensional structure, and cytotoxicity on cancer cell lines (Jurkat E6-1 and human mammary breast cancer MDA-MB-231) of recombinant tamapin and five related peptides bearing mutations on residues (R6A,R7A, R13A, R6A-R7A, and GS-tamapin) that were previously suggested to be important for tamapin's activity. The indicated cell lines were used as they constitutively express KCa2.2 channels. The studied toxin-like peptides displayed lethal responses on Jurkat T cells and breast cancer cells; their effect is dose- and time-dependent with IC50 values in the nanomolar range. The order of potency is r-tamapin>GS-tamapin>R6A>R13A>R6A-R7A>R7A for Jurkat T cells and r-tamapin>R7A for MDA-MB-231 breast cancer cells. Our structural determination by NMR demonstrated that r-tamapin preserves the folding of the αKTx5 subfamily and that neither single nor double alanine mutations affect the three-dimensional structure of the wild-type peptide. In contrast, our activity assays show that changes in cytotoxicity are related to the chemical nature of certain residues. Our results suggest that the toxic activity of r-tamapin on Jurkat and breast cancer cells could be mediated by the interaction of charged residues in tamapin with KCa2.2 channels via the apoptotic cell death pathway.
Assuntos
Neurotoxinas/toxicidade , Peptídeos/toxicidade , Proteínas Recombinantes/toxicidade , Venenos de Escorpião/toxicidade , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Modelos Moleculares , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Animal venoms are rich sources of ligands for studying ion channels and other pharmacological targets. Proteomic analyses of the soluble venom from the Mexican scorpion Vaejovis mexicanus smithi showed that it contains more than 200 different components. Among them, a 36-residue peptide with a molecular mass of 3864 Da (named Vm24) was shown to be a potent blocker of Kv1.3 of human lymphocytes (K(d) â¼ 3 pM). The three-dimensional solution structure of Vm24 was determined by nuclear magnetic resonance, showing the peptide folds into a distorted cystine-stabilized α/ß motif consisting of a single-turn α-helix and a three-stranded antiparallel ß-sheet, stabilized by four disulfide bridges. The disulfide pairs are formed between Cys6 and Cys26, Cys12 and Cys31, Cys16 and Cys33, and Cys21 and Cys36. Sequence analyses identified Vm24 as the first example of a new subfamily of α-type K(+) channel blockers (systematic number α-KTx 23.1). Comparison with other Kv1.3 blockers isolated from scorpions suggests a number of structural features that could explain the remarkable affinity and specificity of Vm24 toward Kv1.3 channels of lymphocytes.
Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Linfócitos T/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Dissulfetos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Filogenia , Conformação Proteica , Venenos de Escorpião/síntese química , Escorpiões/químicaRESUMO
Scorpion venoms are a rich source of K(+) channel-blocking peptides. For the most part, they are structurally related small disulfide-rich proteins containing a conserved pattern of six cysteines that is assumed to dictate their common three-dimensional folding. In the conventional pattern, two disulfide bridges connect an α-helical segment to the C-terminal strand of a double- or triple-stranded ß-sheet, conforming a cystine-stabilized α/ß scaffold (CSα/ß). Here we show that two K(+) channel-blocking peptides from Tityus scorpions conserve the cysteine spacing of common scorpion venom peptides but display an unconventional disulfide pattern, accompanied by a complete rearrangement of the secondary structure topology into a CS helix-loop-helix fold. Sequence and structural comparisons of the peptides adopting this novel fold suggest that it would be a new elaboration of the widespread CSα/ß scaffold, thus revealing an unexpected structural versatility of these small disulfide-rich proteins. Acknowledgment of such versatility is important to understand how venom structural complexity emerged on a limited number of molecular scaffolds.
Assuntos
Cisteína/química , Venenos de Escorpião/química , Escorpiões , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/farmacologia , Análise de Sequência de Proteína , Homologia Estrutural de Proteína , Propriedades de Superfície , XenopusRESUMO
Electron microscopy of frozen-hydrated samples (cryo-EM) can yield high resolution structures of macromolecular complexes by accurately determining the orientation of large numbers of experimental views of the sample relative to an existing 3D model. The "initial model problem", the challenge of obtaining these orientations ab initio, remains a major bottleneck in determining the structure of novel macromolecules, chiefly those lacking internal symmetry. We previously proposed a method for the generation of initial models--orthogonal tilt reconstruction (OTR)--that bypasses limitations inherent to the other two existing methods, random conical tilt (RCT) and angular reconstitution (AR). Here we present a validation of OTR with a biological test sample whose structure was previously solved by RCT: the complex between the yeast exosome and the subunit Rrp44. We show that, as originally demonstrated with synthetic data, OTR generates initial models that do not exhibit the "missing cone" artifacts associated with RCT and show an isotropic distribution of information when compared with the known structure. This eliminates the need for further user intervention to solve these artifacts and makes OTR ideal for automation and the analysis of heterogeneous samples. With the former in mind, we propose a set of simple quantitative criteria that can be used, in combination, to select from a large set of initial reconstructions a subset that can be used as reliable references for refinement to higher resolution.