Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(44): 9619-9631, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714646

RESUMO

Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.

2.
J Chem Phys ; 153(24): 244307, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380089

RESUMO

Functional group substituents are a ubiquitous tool in ground-state organic chemistry often employed to fine-tune chemical properties and obtain desired chemical reaction outcomes. Their effect on photoexcited electronic states, however, remains poorly understood. To help build an intuition for these effects, we have studied ethylene, substituted with electron acceptor (cyano) and/or electron donor (methoxy) substituents, both theoretically and experimentally: using ab initio quantum molecular dynamics and time-resolved photoelectron spectroscopy. Our results show the consistent trend that photo-induced ethylenic dynamics is primarily localized to the carbon with the greater electron density. For doubly substituted ethylenes, the trend is additive when both substituents are located on opposite carbons, whereas the methoxy group (in concert with steric effects) dominates when both substituents are located on a single carbon atom. These results point to the development of rules for structure-dynamics correlations; in this case, a novel mechanistic ultrafast photochemistry for conjugated carbon chains employing long-established chemical concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA