Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuron ; 111(1): 65-80.e6, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36334595

RESUMO

The primary cilium is a central signaling component during embryonic development. Here we focus on CROCCP2, a hominid-specific gene duplicate from ciliary rootlet coiled coil (CROCC), also known as rootletin, that encodes the major component of the ciliary rootlet. We find that CROCCP2 is highly expressed in the human fetal brain and not in other primate species. CROCCP2 gain of function in the mouse embryonic cortex and human cortical cells and organoids results in decreased ciliogenesis and increased cortical progenitor amplification, particularly basal progenitors. CROCCP2 decreases ciliary dynamics by inhibition of the IFT20 ciliary trafficking protein, which then impacts neurogenesis through increased mTOR signaling. Loss of function of CROCCP2 in human cortical cells and organoids leads to increased ciliogenesis, decreased mTOR signaling, and impaired basal progenitor amplification. These data identify CROCCP2 as a human-specific modifier of cortical neurogenesis that acts through modulation of ciliary dynamics and mTOR signaling.


Assuntos
Cílios , Transdução de Sinais , Animais , Humanos , Camundongos , Cílios/metabolismo , Citoesqueleto/metabolismo , Neurogênese , Serina-Treonina Quinases TOR/metabolismo
2.
Neuron ; 103(6): 1096-1108.e4, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31353074

RESUMO

During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.


Assuntos
Autorrenovação Celular/genética , Repressão Epigenética/genética , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Sirtuína 1/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Código das Histonas , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
3.
Cell ; 173(6): 1370-1384.e16, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856955

RESUMO

The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex.


Assuntos
Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor Notch2/genética , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Células-Tronco Neurais/metabolismo , Transdução de Sinais
4.
Cell Rep ; 23(9): 2732-2743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847802

RESUMO

The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation.


Assuntos
Envelhecimento/patologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Córtex Visual/patologia , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Córtex Cerebral/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos , Sinapses/metabolismo , Telencéfalo/metabolismo
5.
Cancer Cell ; 26(6): 797-812, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490446

RESUMO

Disrupted differentiation during development can lead to oncogenesis, but the underlying mechanisms remain poorly understood. Here we identify BCL6, a transcriptional repressor and lymphoma oncoprotein, as a pivotal factor required for neurogenesis and tumor suppression of medulloblastoma (MB). BCL6 is necessary for and capable of preventing the development of GNP-derived MB in mice, and can block the growth of human MB cells in vitro. BCL6 neurogenic and oncosuppressor effects rely on direct transcriptional repression of Gli1 and Gli2 effectors of the SHH pathway, through recruitment of BCOR corepressor and SIRT1 deacetylase. Our findings identify the BCL6/BCOR/SIRT1 complex as a potent repressor of the SHH pathway in normal and oncogenic neural development, with direct diagnostic and/or therapeutic relevance for SHH MB.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Meduloblastoma/patologia , Neurogênese , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Animais , Linhagem Celular Tumoral , Cerebelo/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Meduloblastoma/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
6.
Neuron ; 77(3): 440-56, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395372

RESUMO

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Assuntos
Encéfalo/citologia , Células-Tronco Embrionárias/citologia , Rede Nervosa/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células Piramidais/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Axônios/fisiologia , Bromodesoxiuridina , Cálcio/metabolismo , Diferenciação Celular , Transplante de Células , Células Cultivadas , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Feto , Corantes Fluorescentes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Rede Nervosa/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Gravidez , Células Piramidais/citologia , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Potenciais Sinápticos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , Valina/análogos & derivados , Valina/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
7.
Nat Neurosci ; 15(12): 1627-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160044

RESUMO

During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signaling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition. We identified Bcl6, an oncogene, as encoding a proneurogenic factor that is required for proper neurogenesis of the mouse cerebral cortex. BCL6 promoted the neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. BCL6 triggered exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD(+)-dependent deacetylase Sirt1, which was required for BCL6-dependent neurogenesis. The resulting epigenetic silencing of Hes5 led to neuronal differentiation despite active Notch signaling. Our findings suggest a role for BCL6 in neurogenesis and uncover Notch-BCL6-Sirt1 interactions that may affect other aspects of physiology and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Repressão Epigenética/fisiologia , Neurogênese/fisiologia , Receptores Notch/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Sirtuína 1/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/fisiologia , Repressão Epigenética/genética , Feminino , Inativação Gênica , Marcação de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Gravidez , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores Notch/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Sirtuína 1/genética
8.
EMBO Rep ; 13(4): 355-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22402664

RESUMO

The transcription factor Eomesodermin (Eomes) is involved in early embryonic patterning, but the range of cell fates that it controls as well as its mechanisms of action remain unclear. Here we show that transient expression of Eomes promotes cardiovascular fate during embryonic stem cell differentiation. Eomes also rapidly induces the expression of Mesp1, a key regulator of cardiovascular differentiation, and directly binds to regulatory sequences of Mesp1. Eomes effects are strikingly modulated by Activin signalling: high levels of Activin inhibit the promotion of cardiac mesoderm by Eomes, while they enhance Eomes-dependent endodermal specification. These results place Eomes upstream of the Mesp1-dependent programme of cardiogenesis, and at the intersection of mesodermal and endodermal specification, depending on the levels of Activin/Nodal signalling.


Assuntos
Ativinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Miocárdio/citologia , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Organogênese/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas com Domínio T/genética
9.
Nat Protoc ; 4(10): 1454-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19798080

RESUMO

Embryonic stem cells (ESCs) constitute a tool of great potential in neurobiology, enabling the directed differentiation of specific neural cell types. We have shown recently that neurons of the cerebral cortex can be generated from mouse ESCs cultured in a chemically defined medium that contains no morphogen, but in the presence of the sonic hedgehog inhibitor cyclopamine. Corticogenesis from ESCs recapitulates the most important steps of cortical development, leading to the generation of multipotent cortical progenitors that sequentially produce cortical pyramidal neurons displaying distinct layer-specific identities. The protocol provides a most reductionist cellular model to tackle the complex mechanisms of cortical development and function, thereby opening new perspectives for the modeling of cortical diseases and the design of novel neurological treatments, while offering an alternative to animal use. In this protocol, we describe a method by which millions of cortical neurons can be generated in 2-3 weeks, starting from a single frozen vial of ESCs.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Córtex Cerebral/citologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Animais , Meios de Cultura , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Nature ; 455(7211): 351-7, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18716623

RESUMO

The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, recapitulate in vitro the major milestones of cortical development, leading to the sequential generation of a diverse repertoire of neurons that display most salient features of genuine cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop patterns of axonal projections corresponding to a wide range of cortical layers, but also to highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that the identity of a cortical area can be specified without any influence from the brain. The discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal specification, and opens new avenues for the modelling and treatment of brain diseases.


Assuntos
Diferenciação Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Células-Tronco Embrionárias/citologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Células Piramidais/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA