Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Healthc Mater ; 13(11): e2303910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180445

RESUMO

Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.


Assuntos
Nanopartículas , Nanopartículas/química , Animais , Camundongos , Proteínas/química , Receptor 8 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas
2.
Front Immunol ; 12: 710263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267764

RESUMO

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Esquemas de Imunização , Imunogenicidade da Vacina , Mutação , Domínios Proteicos/genética , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Ácidos Linoleicos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Glicoproteína da Espícula de Coronavírus/química , Resultado do Tratamento , Células Vero
3.
NPJ Vaccines ; 6(1): 80, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078913

RESUMO

Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.

4.
Drug Metab Dispos ; 49(3): 202-211, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355213

RESUMO

All-trans-retinoic acid (atRA) is a critical endogenous signaling molecule. atRA is predominantly synthesized from retinaldehyde by aldehyde dehydrogenase 1A1 (ALDH1A1), but aldehyde oxidase (AOX) may also contribute to atRA biosynthesis. The goal of this study was to test the hypothesis that AOX contributes significantly to atRA formation in human liver. Human recombinant AOX formed atRA from retinaldehyde (Km ∼1.5 ± 0.4 µM; kcat ∼3.6 ± 2.0 minute-1). In human liver S9 fractions (HLS9), atRA formation was observed in the absence of NAD+, suggesting AOX contribution to atRA formation. In the presence of NAD+, Eadie-Hofstee plots of atRA formation in HLS9 indicated that two enzymes contributed to atRA formation. The two enzymes were identified as AOX and ALDH1A1 based on inhibition of atRA formation by AOX inhibitor hydralazine (20%-50% inhibition) and ALDH1A1 inhibitor WIN18,446 (50%-80%inhibition). The expression of AOX in HLS9 was 9.4-24 pmol mg-1 S9 protein, whereas ALDH1A1 expression was 156-285 pmol mg-1 S9 protein measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantification of signature peptides. The formation velocity of atRA in the presence of NAD+ correlated significantly with the expression of ALDH1A1 and AOX protein. Taken together, the data show that both AOX and ALDH1A1 contribute to atRA biosynthesis in the human liver, with ALDH1A1 being the high-affinity, low-capacity enzyme and AOX being the low-affinity, high-capacity enzyme. The results suggest that in the case of ALDH1A dysfunction or excess vitamin A, AOX may play an important role in regulating hepatic vitamin A homeostasis and that inhibition of AOX may alter atRA biosynthesis and signaling. SIGNIFICANCE STATEMENT: This study provides direct evidence to show that human AOX converts retinaldehyde to atRA and contributes to hepatic atRA biosynthesis. The finding that AOX may be responsible for 20%-50% of overall hepatic atRA formation suggests that alterations in AOX activity via drug-drug interactions, genetic polymorphisms, or disease states may impact hepatic atRA concentrations and signaling and alter vitamin A homeostasis.


Assuntos
Aldeído Oxidase/biossíntese , Fígado/metabolismo , Tretinoína/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Criança , Relação Dose-Resposta a Droga , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia
5.
ACS Cent Sci ; 4(8): 1023-1030, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159399

RESUMO

Understanding the origins of lipid membrane bilayer rearrangement in response to external stimuli is an essential component of cell biology and the bottom-up design of liposomes for biomedical applications. The enzymes phospholipase C and D (PLC and PLD) both cleave the phosphorus-oxygen bonds of phosphate esters in phosphatidylcholine (PC) lipids. The atomic position of this hydrolysis reaction has huge implications for the stability of PC-containing self-assembled structures, such as the cell wall and lipid-based vesicle drug delivery vectors. While PLC converts PC to diacylglycerol (DAG), the interaction of PC with PLD produces phosphatidic acid (PA). Here we present a combination of small-angle scattering data and all-atom molecular dynamics simulations, providing insights into the effects of atomic-scale reorganization on the supramolecular assembly of PC membrane bilayers upon enzyme-mediated incorporation of DAG or PA. We observed that PC liposomes completely disintegrate in the presence of PLC, as conversion of PC to DAG progresses. At lower concentrations, DAG molecules within fluid PC bilayers form hydrogen bonds with backbone carbonyl oxygens in neighboring PC molecules and burrow into the hydrophobic region. This leads initially to membrane thinning followed by a swelling of the lamellar phase with increased DAG. At higher DAG concentrations, localized membrane tension causes a change in lipid phase from lamellar to the hexagonal and micellar cubic phases. Molecular dynamics simulations show that this destabilization is also caused in part by the decreased ability of DAG-containing PC membranes to coordinate sodium ions. Conversely, PLD-treated PC liposomes remain stable up to extremely high conversions to PA. Here, the negatively charged PA headgroup attracts significant amounts of sodium ions from the bulk solution to the membrane surface, leading to a swelling of the coordinated water layer. These findings are a vital step toward a fundamental understanding of the degradation behavior of PC lipid membranes in the presence of these clinically relevant enzymes, and toward the rational design of diagnostic and drug delivery technologies for phospholipase-dysregulation-based diseases.

6.
Chem Mater ; 27(20): 7187-7195, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479671

RESUMO

HIV-1 protease is a key enzyme in the life cycle of HIV/AIDS, as it is responsible for the formation of the mature virus particle. We demonstrate here that phage-display peptides raised against this enzyme can be used as peptide sensors for the detection of HIV-1 protease in a simple, one-pot assay. The presence of the enzyme is detected through an energy transfer between two peptide sensors when simultaneously complexed with the target protein. The multivalent nature of this assay increases the specificity of the detection by requiring all molecules to be interacting in order for there to be a FRET signal. We also perform molecular dynamics simulations to explore the interaction between the protease and the peptides in order to guide the design of these peptide sensors and to understand the mechanisms which cause these simultaneous binding events. This approach aims to facilitate the development of new assays for enzymes that are not dependent on the cleavage of a substrate and do not require multiple washing steps.

7.
Environ Sci Technol ; 47(19): 11232-40, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988335

RESUMO

The growing use of silver nanoparticles (AgNPs) in consumer products has raised concerns about their potential impact on the environment and human health. Whether AgNPs dissolve and release Ag(+) ions, or coarsen to form large aggregates, is critical in determining their potential toxicity. In this work, the stability of AgNPs in dipalmitoylphosphatidylcholine (DPPC), the major component of pulmonary surfactant, was investigated as a function of pH. Spherical, citrate-capped AgNPs with average diameters of 14 ± 1.6 nm (n = 200) were prepared by a chemical bath reduction. The kinetics of Ag(+) ion release was strongly pH-dependent. After 14 days of incubation in sodium perchlorate (NaClO4) or perchloric acid (HClO4) solutions, the total fraction of AgNPs dissolved varied from ∼10% at pH 3, to ∼2% at pH 5, with negligible dissolution at pH 7. A decrease in pH from 7 to 3 also promoted particle aggregation and coarsening. DPPC (100 mg·L(-1)) delayed the release of Ag(+) ions, but did not significantly alter the total amount of Ag(+) released after two weeks. In addition, DPPC improved the dispersion of the AgNPs and inhibited aggregation and coarsening. TEM images revealed that the AgNPs were coated with a DPPC layer serving as a semipermeable layer. Hence, lung lining fluid, particularly DPPC, can modify the aggregation state and kinetics of Ag(+) ion release of inhaled AgNPs in the lung. These observations have important implications for predicting the potential reactivity of AgNPs in the lung and the environment.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Nanopartículas Metálicas/química , Surfactantes Pulmonares/química , Prata/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA