Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genomics ; 21(7): 525-530, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33214768

RESUMO

BACKGROUND: The ability of the human body to produce metabolic energy from light modifies fundamental concepts of biochemistry. OBJECTIVE: This review discusses the relationships between the long-accepted concept is that glucose has a unique dual role as an energy source and as the main source of carbon chains that are precursors of all organic matter. The capability of melanin to produce energy challenges this premise. METHODS: The prevalent biochemical concept, therefore, needs to be adjusted to incorporate a newly discovered state of Nature based on melanin's ability to dissociate water to produce energy and to re-form water from molecular hydrogen and oxygen. RESULTS AND DISCUSSION: Our findings regarding the potential implication of QIAPI-1 as a melanin precursor that has bioenergetics capabilities. CONCLUSION: Specifically, we reported its promising application as a means for treating retinopathy of prematurity (ROP). The instant report focuses on the long-term treatment medical effects of melanin in treating ROP.

2.
Cent Nerv Syst Agents Med Chem ; 20(3): 218-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33167844

RESUMO

BACKGROUND: AMD is becoming one of the leading causes of blindness in older adults. The prevalence rate of the wet form of AMD has been increasing due to the lack of selective therapeutic modalities. Current therapeutic interventions such as drugs targeting VEGF, and VEGF receptors, laser coagulants delivered unsuccessful clinical outcomes in AMD patients. Hence, the cost-effective anti-oxidant therapeutic interventions like molecular hydrogen to protect retinal pigment epithelium (RPE) by mitigating oxidative stress may deliver effective clinical outcomes in AMD patients. METHODS: Female patients with late-stage AMD of age above 70 years were chosen for this case report. The patients were administered QIAPI1©, a melanin precursor via sublingual route and the photographs were obtained for left and right eye to depict the efficacy of QIAPI1© against the wet form of AMD. RESULTS: The administration of QIAPI1© extensively mitigated yellow-colored drusen accumulations in the retina, retinal edema, exudates, and hemorrhages in the right eye, but the effect was minimal in the case of left eye; the overall drusen accumulation was lesser than the first consultation. CONCLUSION: Current case report has concluded the intrinsic effect of melanin in producing the molecular hydrogen and chemical energy across the retinal tissues by dissociating water molecules and dissipating the drusen accumulations, retinal edema, and hemorrhages in AMD patients. Our preliminary study reported the usage of QIAPI1© as a prospective therapeutic modality to mitigate the oxidative stress-mediated pathophysiology of the wet form of AMD.


Assuntos
Degeneração Macular , Melaninas , Idoso , Feminino , Humanos , Degeneração Macular/tratamento farmacológico , Retina , Epitélio Pigmentado da Retina
3.
Cent Nerv Syst Agents Med Chem ; 19(3): 215-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267880

RESUMO

BACKGROUND: Retinopathy of Prematurity (ROP) is a potentially blinding disorder that commonly afflicts premature infants who are born prior to 31weeks of gestation or with a body weight less than 1250 grams (about 2.75 pounds). Another risk factor is excessive oxygen in incubators, which can lead to blindness. A compounding factor is that survival rates for premature infants are rising with concomitantly more cases of ROP. We have reported an unsuspected intrinsic property of melanin to dissociate water. This capability can be considered an alternative treatment option for adult and neonatal diseases. It is known that exogenous surfactant administration suppresses bronchopulmonary dysplasia and consequent death, randomized, controlled trials with various respiratory interventions did not show any significant reductions in morbidity and mortality rates. During a descriptive study about the three leading causes of blindness in the world, the ability of melanin to transform light energy into chemical energy through the dissociation of water molecule was unraveled. Initially, during 2 or 3 years; we tried to link together our findings with the widely accepted metabolic pathways already described in molecular pathway databases, which have been developed to collect and organize the current knowledge on metabolism scattered across a multitude of scientific evidence. OBSERVATIONS: The current report demonstrates the main problems that afflict premature babies with an emphasis on the growth of abnormal vessels in the retina, the explanation for which is unknown until date. We also reported a case of a baby who suffered digestive and respiratory problems with a brain haemorrhage that was successfully treated by laser photocoagulation. We hypothesise that most likely this effect was due to the melanin level and melanin itself produces oxygen via dissociating with water molecules. CONCLUSION: We postulate that the intrinsic effect of melanin may easily convert visible and invisible light into chemical energy via a water dissociation reaction similar to the one in plant's chlorophyll, and markedly elevated with diagnosis and treatment of the complications related to premature babies.


Assuntos
Lactente Extremamente Prematuro/metabolismo , Melaninas/metabolismo , Oxigênio/metabolismo , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Água/metabolismo , Pré-Escolar , Humanos , Recém-Nascido , Masculino , Melaninas/uso terapêutico , Oxigênio/química , Resultado do Tratamento , Água/química
4.
Cent Nerv Syst Agents Med Chem ; 15(1): 32-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25645910

RESUMO

Currently, cell biology is based on glucose as the main source of energy. Cellular bioenergetic pathways have become unnecessarily complex in their eagerness to explain that how the cell is able to generate and use energy from the oxidation of glucose, where mitochondria play an important role through oxidative phosphorylation. During a descriptive study about the three leading causes of blindness in the world, the ability of melanin to transform light energy into chemical energy through the dissociation of water molecule was unraveled. Initially, during 2 or 3 years; we tried to link together our findings with the widely accepted metabolic pathways already described in metabolic pathway databases, which have been developed to collect and organize the current knowledge on metabolism scattered across a multitude of scientific articles. However, firstly, the literature on metabolism is extensive but rarely conclusive evidence is available, and secondly, one would expect these databases to contain largely the same information, but the contrary is true. For the apparently well studied metabolic process Krebs cycle, which was described as early as 1937 and is found in nearly every biology and chemistry curriculum, there is a considerable disagreement between at least five databases. Of the nearly 7000 reactions contained jointly by these five databases, only 199 are described in the same way in all the five databases. Thus to try to integrate chemical energy from melanin with the supposedly well-known bioenergetic pathways is easier said than done; and the lack of consensus about metabolic network constitutes an insurmountable barrier. After years of unsuccessful results, we finally realized that the chemical energy released through the dissociation of water molecule by melanin represents over 90% of cell energy requirements. These findings reveal a new aspect of cell biology, as glucose and ATP have biological functions related mainly to biomass and not so much with energy. Our finding about the unexpected intrinsic property of melanin to transform photon energy into chemical energy through the dissociation of water molecule, a role performed supposedly only by chlorophyll in plants, seriously questions the sacrosanct role of glucose and thereby mitochondria as the primary source of energy and power for the cells.


Assuntos
Citoplasma/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Córnea/irrigação sanguínea , Córnea/efeitos dos fármacos , Córnea/metabolismo , Citoplasma/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Humanos , Melaninas/metabolismo , Melaninas/farmacologia , Mitocôndrias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA