Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 190(3): 1673-1686, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946780

RESUMO

Climate change is challenging the resilience of grapevine (Vitis), one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach including the breeding of more drought-tolerant genotypes. In this study, we focused on plant hydraulics as a multi-trait system that allows the plant to maintain hydraulic integrity and gas exchange rates longer under drought. We quantified a broad range of drought-related traits within and across Vitis species, created in silico libraries of trait combinations, and then identified drought tolerant trait syndromes. By modeling the maintenance of hydraulic integrity of current cultivars and the drought tolerant trait syndromes, we identified elite ideotypes that increased the amount of time they could experience drought without leaf hydraulic failure. Generally, elites exhibited a trait syndrome with lower stomatal conductance, earlier stomatal closure, and a larger hydraulic safety margin. We demonstrated that, when compared with current cultivars, elite ideotypes have the potential to decrease the risk of hydraulic failure across wine regions under future climate scenarios. This study reveals the syndrome of traits that can be leveraged to protect grapevine from experiencing hydraulic failure under drought and increase drought tolerance.


Assuntos
Vitis , Água , Síndrome , Melhoramento Vegetal , Secas , Folhas de Planta/genética , Vitis/genética
2.
Data Brief ; 31: 105940, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32685626

RESUMO

Land-use planning in regard of earthquake-triggered landslides is usually implemented by means of the production of hazard maps. The well-known Newmark rigid block methodology is the most frequent used approach for this purpose. In this method, slope stability is evaluated by the estimation of the Newmark displacement, which is used to set different categories of hazard. This methodology presents limitations due to the difficulty of incorporating the variability of the used variables. For that reason, the logic-tree approach has been used in order to incorporate the epistemic uncertainties and compute probabilistic seismic-landslide hazard maps. However, the used weights in the logic-tree are usually set for each branch based on an expert judgement or subjective criteria. This article provide data obtained from the use of logic-tree methodology; this dataset is useful for deriving the unbiased weights to use in such methodology and in moderate-to-low magnitude scenarios. The data presented here are related to the article entitled "Obtaining suitable logic-tree weights for probabilistic earthquake-induced landslide hazard analyses" (Rodríguez-Peces et al., 2020) [1].

3.
BMC Plant Biol ; 19(1): 69, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744556

RESUMO

BACKGROUND: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest. RESULTS: The vines mediated water stress gradually and involving multiple strategies: osmotic adjustment, transcript-metabolite alteration and leaf shedding. Initially stomatal conductance and leaf water potential showed a steep decrease together with the induction of stress related metabolism, e.g. up-regulation of proline and GABA metabolism and stress related sugars, and the down-regulation of developmental processes. Later, progressive soil drying was associated with an incremental contribution of Ca2+ and sucrose to the osmotic adjustment concomitant with the initiation of leaf shedding. Last, towards harvest under progressive stress conditions following leaf shedding, incremental changes in leaf water potential were measured, while the magnitude of perturbation in leaf metabolism lessened. CONCLUSIONS: The data present evidence that over time grapevine acclimation to water stress diversifies in temporal responses encompassing the alteration of central metabolism and gene expression, osmotic adjustments and reduction in leaf area. Together these processes mitigate leaf water stress and aid in maintaining the berry-ripening program.


Assuntos
Folhas de Planta/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Osmose , Prolina/metabolismo , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Front Plant Sci ; 8: 1124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740499

RESUMO

Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis-regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

5.
J Agric Food Chem ; 65(29): 5868-5878, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28661689

RESUMO

Postveraison water deficit is a common strategy implemented to improve fruit composition in many wine-growing regions. However, contrasting results are often reported on fruit size and composition, a challenge for generalizing the positive impact of this technique. Our research investigated the effect of water deficit (WD) imposed at veraison on Merlot grapevines, during two experimental seasons (2014-2015). In both years WD resulted in reduced carbon assimilation rates and leaf shedding. However, the treatment effect on the analyzed berry parameters varied between seasons. Modification of skin metabolites was more evident in 2015 than in 2014, despite the similar soil water content and water stress physiological parameters (gas exchange, water potential) recorded in the two experimental years. Higher solar radiation and air temperature in 2015 than in 2014 hint for the involvement of atmospheric parameters in fulfilling the potential effect of WD. Our results suggest that the interaction between water availability and weather conditions plays a crucial role in modulating the grape berry composition.


Assuntos
Frutas/metabolismo , Vitis/metabolismo , Água/metabolismo , Frutas/crescimento & desenvolvimento , Estações do Ano , Temperatura , Vitis/crescimento & desenvolvimento , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA