Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(9): 246, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420160

RESUMO

The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.


Assuntos
Glicerol , Saccharomycetales , Glicerol/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Regiões Promotoras Genéticas , Carbono/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Biotechnol ; 352: 59-67, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35618082

RESUMO

Previously, we showed that the methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) could produce and secrete the beta-propeller phytase FTEII in an active form under the control of the AOX1 promoter and methanol as the inductor. In this work, we engineered P. pastoris strains to construct a constitutive P. pastoris expression system (GAP promoter) and extracellularly produce the phytase FTEII. We optimized the culture conditions to increase the extracellular volumetric phytase productivity (Qp) and evaluated the impact of the optimization process on the physiological response of the host. Moreover, we analyzed the expression levels of the FTEII gene and endogenous genes for P. pastoris cells in cultures with the lowest and highest Qp to understand which processes (from heterologous gene expression to protein secretion) might be responsible for the increase in Qp. The results indicate that a low specific growth rate and temperature in the fed-batch phase increases the Qp, which was correlated with an upregulation of the KAR2 and PSA1-1/MPG1 genes rather than increased heterologous gene transcription.


Assuntos
6-Fitase , Técnicas de Cultura Celular por Lotes , 6-Fitase/genética , Expressão Gênica , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales , Temperatura
3.
Appl Biochem Biotechnol ; 193(9): 2806-2829, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33931817

RESUMO

Glargine is a long-acting insulin analog with less hypoglycemia risk. Like human insulin, glargine is a globular protein composed of two polypeptide chains linked by two disulfide bonds. Pichia pastoris KM71 Muts strains were engineered to produce and secrete insulin glargine through the cleavage of two Kex2 sites. Nevertheless, the recombinant product was the single-chain insulin glargine (glargine precursor) instead of the expected double-chain glargine. Molecular model analysis of the dimeric and hexameric forms of the single-chain glargine showed buried Kex2 sites that prevent intracellular glargine precursor processing. The effect of the methanol-feeding strategy (methanol limited fed-batch vs. methanol non-limited fed-batch) and the induction temperature (28 °C vs. 24 °C) on the cell growth and production parameters in bioreactor cultures was also evaluated. Exponential growth at a constant specific growth rate was observed in all the cultures. The volumetric productivities and specific substrate consumption rates were directly proportional to the specific growth rate. The lower temperature led to increased metabolic activity of the yeast cells, which increased the specific growth rate. The methanol non-limited fed-batch culture at 24 °C showed the highest values for the process parameters. After 75 h of induction, 0.122 g/L of glargine precursor was obtained from the culture medium.


Assuntos
Temperatura Alta , Insulina Glargina/metabolismo , Metanol/farmacologia , Agregados Proteicos , Precursores de Proteínas/biossíntese , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Saccharomycetales/metabolismo , Humanos , Insulina Glargina/química , Precursores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA