Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Mater Eng ; 34(6): 561-575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545206

RESUMO

BACKGROUND: Bovine pericardium (BP) is a scaffold widely used in soft tissues regeneration; however, its calcification in contact with glutaraldehyde, represent an opportunity for its application in hard tissues, such as bone in the oral cavity. OBJECTIVE: To develop and to characterize decellularized and glutaraldehyde-crosslinked bovine pericardium (GC-BP) as a potential scaffold for guided bone regeneration GBR. METHODS: BP samples from healthy animals of the bovine zebu breed were decellularized and crosslinked by digestion with detergents and glutaraldehyde respectively. The resulting cell-free scaffold was physical, chemical, mechanical, and biologically characterized thought hematoxylin and eosin staining, DNA quantification, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), uniaxial tensile test, cell viability and live and dead assay in cultures of dental pulp stem cells (DPSCs). RESULTS: The decellularization and crosslinking of BP appeared to induce conformational changes of the CLG molecules, which led to lower mechanical properties at the GC-BP scaffold, at the same time that promoted cell adhesion and viability of DPSCs. CONCLUSION: This study suggests that the decellularized and GC-BP is a scaffold with the potential to be used promoting DPSCs recruitment, which has a great impact on the dental area.


Assuntos
Calcificação Fisiológica , Pericárdio , Bovinos , Animais , Glutaral/análise , Glutaral/farmacologia , Adesão Celular , Alicerces Teciduais/química
2.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292777

RESUMO

WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and ArabidopsisWRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop.


Assuntos
Arabidopsis , Musa , Musa/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Aminoácidos/genética , Zinco/metabolismo
3.
Genes (Basel) ; 13(4)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35456444

RESUMO

Banana is the most popular fruit in the world, with a relevant role in food security for more than 400 million people. However, fungal diseases cause substantial losses every year. A better understanding of the banana immune system should facilitate the development of new disease-resistant cultivars. In this study, we performed a genome-wide analysis of the leucine-rich repeat receptor-like protein (LRR-RLP) disease resistance gene family in a wild banana. We identified 78 LRR-RLP genes in the banana genome. Remarkably, seven MaLRR-RLPs formed a gene cluster in the distal part of chromosome 10, where resistance to Fusarium wilt caused by Foc race 1 has been previously mapped. Hence, we proposed these seven MaLRR-RLPs as resistance gene candidates (RGCs) for Fusarium wilt. We also identified seven other banana RGCs based on their close phylogenetic relationships with known LRR-RLP proteins. Moreover, phylogenetic analysis of the banana, rice, and Arabidopsis LRR-RLP families revealed five major phylogenetic clades shared by these plant species. Finally, transcriptomic analysis of the MaLRR-RLP gene family in plants treated with Foc race 1 or Foc TR4 showed the expression of several members of this family, and some of them were upregulated in response to these Foc races. Our study provides novel insights into the structure, distribution, evolution, and expression of the LRR-RLP gene family in bananas as well as valuable RGCs that will facilitate the identification of disease resistance genes for the genetic improvement of this crop.


Assuntos
Fusarium , Musa , Resistência à Doença/genética , Fusarium/genética , Humanos , Musa/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
4.
Bioprocess Biosyst Eng ; 42(10): 1561-1571, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31187270

RESUMO

In this study, the microalga Chlorella saccharophila was subjected to ultraviolet (UV) mutagenesis, and mutant screening was conducted based on acidity tolerance to generate mutants with increased triacylglycerol (TAG) and polyunsaturated fatty acid (PUFA) contents. Two improved mutant strains (M1 and M5) were generated. M1 and M5 accumulated 27.2% and 27.4% more TAG, respectively, and showed stronger fluorescence intensity than the wild-type (WT) strain when the cells of these mutants were stained with the lipophilic Nile Red stain. In the M1 mutant, 50.5% of the fatty acid methyl esters (FAMEs) were saturated (C16:0 and C18:0) and 25.27% were monounsaturated (C18:1) fatty acids which are suitable for biofuels production. In the M5 mutant, 65.19% of the total FAMEs were nutritional PUFAs (C16:2, C18:2, and C18:3), while these FAMEs were not detected in the WT. These results demonstrated that UV mutagenesis coupled to an acid pH screening strategy represents a valuable and fast platform to generate mutants of C. saccharophila with improved TAG and PUFA contents for biofuels and nutraceutical applications, respectively.


Assuntos
Chlorella , Ácidos Graxos Insaturados , Microalgas , Mutação , Triglicerídeos , Chlorella/genética , Chlorella/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Microalgas/genética , Microalgas/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/genética
5.
Appl Microbiol Biotechnol ; 103(8): 3487-3499, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30899985

RESUMO

The expression of transgenes in the nucleus is an attractive alternative for the expression of recombinant proteins in the green microalga Chlamydomonas reinhardtii. For this purpose, a strong inducible promoter that allows protein accumulation without possible negative effects on cell multiplication and biomass accumulation is desirable. A previous study at our laboratory identified that the CrGPDH3 gene from C. reinhardtii was inducible under NaCl treatments. In this study, we cloned and characterized a 3012 bp sequence upstream of the start codon of the CrGPDH3 gene, including the 285 bp 5' untranslated region. This region was identified as the full-length promoter and named PromA (- 2727 to + 285). Deletion analysis of PromA using GUSPlus as a reporter gene enabled us to identify PromC (- 653 to + 285) as the core promoter, displaying basal expression. A region named RIA1 (- 2727 to - 1672) was suggested to contain the NaCl response elements. Moreover, deletion analysis of RIA1 enabled us to identify a region of 577 bp named RIA3 (- 2727 to - 2150) that, when cloned upstream of PromC, was able to drive the expression of GUSPlus in response to 5 and 100 mM NaCl, and 100 mM KCl, similar to the native CrGPDH3 promoter. These results expand our understanding of the transcriptional mechanism of CrGPDH3 and clearly show that CrGPDH3 promoter and its chimeric forms are highly salt-inducible and can be used as inducible promoters for the overexpression of transgenes in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Glicerolfosfato Desidrogenase/genética , Microalgas/genética , Regiões Promotoras Genéticas , Transgenes/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/enzimologia , Clonagem Molecular , Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Microalgas/química , Microalgas/enzimologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Elementos de Resposta , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA