Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309507

RESUMO

Cytosolic long dsRNA, among the most potent proinflammatory signals, is recognized by melanoma differentiation-associated protein 5 (MDA5). MDA5 binds dsRNA cooperatively forming helical filaments. ATP hydrolysis by MDA5 fulfills a proofreading function by promoting dissociation of shorter endogenous dsRNs from MDA5 while allowing longer viral dsRNAs to remain bound leading to activation of interferon-ß responses. Here, we show that adjacent MDA5 subunits in MDA5-dsRNA filaments hydrolyze ATP cooperatively, inducing cooperative filament disassembly. Consecutive rounds of ATP hydrolysis amplify the filament footprint, displacing tightly bound proteins from dsRNA. Our electron microscopy and biochemical assays show that LGP2 binds to dsRNA at internal binding sites through noncooperative ATP hydrolysis. Unlike MDA5, LGP2 has low nucleic acid selectivity and can hydrolyze GTP and CTP as well as ATP. Binding of LGP2 to dsRNA promotes nucleation of MDA5 filament assembly resulting in shorter filaments. Molecular modeling identifies an internally bound MDA5-LGP2-RNA complex, with the LGP2 C-terminal tail forming the key contacts with MDA5. These contacts are specifically required for NTP-dependent internal RNA binding. We conclude that NTPase-dependent binding of LGP2 to internal dsRNA sites complements NTPase-independent binding to dsRNA ends, via distinct binding modes, to increase the number and signaling output of MDA5-dsRNA complexes.


Assuntos
RNA Helicases DEAD-box , Helicase IFIH1 Induzida por Interferon , RNA Helicases , RNA de Cadeia Dupla , RNA Viral , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Hidrólise , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos
2.
Nat Commun ; 12(1): 6668, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795277

RESUMO

Our innate immune responses to viral RNA are vital defenses. Long cytosolic double-stranded RNA (dsRNA) is recognized by MDA5. The ATPase activity of MDA5 contributes to its dsRNA binding selectivity. Mutations that reduce RNA selectivity can cause autoinflammatory disease. Here, we show how the disease-associated MDA5 variant M854K perturbs MDA5-dsRNA recognition. M854K MDA5 constitutively activates interferon signaling in the absence of exogenous RNA. M854K MDA5 lacks ATPase activity and binds more stably to synthetic Alu:Alu dsRNA. CryoEM structures of MDA5-dsRNA filaments at different stages of ATP hydrolysis show that the K854 sidechain forms polar bonds that constrain the conformation of MDA5 subdomains, disrupting key steps in the ATPase cycle- RNA footprint expansion and helical twist modulation. The M854K mutation inhibits ATP-dependent RNA proofreading via an allosteric mechanism, allowing MDA5 to form signaling complexes on endogenous RNAs. This work provides insights on how MDA5 recognizes dsRNA in health and disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Inflamação/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação de Sentido Incorreto , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Humanos , Imunidade Inata/genética , Inflamação/genética , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Viral/genética
3.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504068

RESUMO

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Triptofano/química , Substituição de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Óperon , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Triptofano/metabolismo
4.
FEMS Microbiol Rev ; 44(6): 793-803, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32717057

RESUMO

Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.


Assuntos
Anti-Infecciosos/química , Microscopia Crioeletrônica , Desenvolvimento de Medicamentos , Ribossomos/metabolismo , Farmacorresistência Bacteriana
5.
Nat Microbiol ; 5(4): 554-561, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094585

RESUMO

Polyamines are essential metabolites that play an important role in cell growth, stress adaptation and microbial virulence1-3. To survive and multiply within a human host, pathogenic bacteria adjust the expression and activity of polyamine biosynthetic enzymes in response to different environmental stresses and metabolic cues2. Here, we show that ornithine capture by the ribosome and the nascent peptide SpeFL controls polyamine synthesis in γ-proteobacteria by inducing the expression of the ornithine decarboxylase SpeF4, via a mechanism involving ribosome stalling and transcription antitermination. In addition, we present the cryogenic electron microscopy structure of an Escherichia coli ribosome stalled during translation of speFL in the presence of ornithine. The structure shows how the ribosome and the SpeFL sensor domain form a highly selective binding pocket that accommodates a single ornithine molecule but excludes near-cognate ligands. Ornithine pre-associates with the ribosome and is then held in place by the sensor domain, leading to the compaction of the SpeFL effector domain and blocking the action of release factor 1. Thus, our study not only reveals basic strategies by which nascent peptides assist the ribosome in detecting a specific metabolite, but also provides a framework for assessing how ornithine promotes virulence in several human pathogens.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/genética , Ornitina Descarboxilase/química , Ornitina/química , Ribossomos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Modelos Moleculares , Ornitina/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Filogenia , Poliaminas/química , Poliaminas/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA