Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Brain ; 17(1): 33, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840181

RESUMO

Loss-of-function mutations in the progranulin (GRN) gene are an autosomal dominant cause of Frontotemporal Dementia (FTD). These mutations typically result in haploinsufficiency of the progranulin protein. Grn+/- mice provide a model for progranulin haploinsufficiency and develop FTD-like behavioral abnormalities by 9-10 months of age. In previous work, we demonstrated that Grn+/- mice develop a low dominance phenotype in the tube test that is associated with reduced dendritic arborization of layer II/III pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), a region key for social dominance behavior in the tube test assay. In this study, we investigated whether progranulin haploinsufficiency induced changes in dendritic spine density and morphology. Individual layer II/III pyramidal neurons in the prelimbic mPFC of 9-10 month old wild-type or Grn+/- mice were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D reconstruction for morphometry analysis. Dendritic spine density in Grn+/- mice was comparable to wild-type littermates, but the apical dendrites in Grn+/- mice had a shift in the proportion of spine types, with fewer stubby spines and more thin spines. Additionally, apical dendrites of Grn+/- mice had longer spines and smaller thin spine head diameter in comparison to wild-type littermates. These changes in spine morphology may contribute to altered circuit-level activity and social dominance deficits in Grn+/- mice.


Assuntos
Espinhas Dendríticas , Haploinsuficiência , Córtex Pré-Frontal , Progranulinas , Animais , Espinhas Dendríticas/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/metabolismo , Progranulinas/deficiência , Progranulinas/genética , Camundongos , Células Piramidais/metabolismo , Células Piramidais/patologia , Masculino , Camundongos Endogâmicos C57BL
2.
Hippocampus ; 34(5): 218-229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362938

RESUMO

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

3.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546752

RESUMO

Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation. By integrating data at the genetic, molecular, subcellular, and tissue levels, we bridged the divergent fields of molecular biology and neuroimaging to identify a molecular basis of brain connectivity. One-Sentence Summary: Dendritic spine morphometry and synaptic proteins unite the divergent fields of molecular biology and neuroimaging.

4.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066216

RESUMO

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation (CRISPRa) system in which catalytically-dead Cas9 (dCas9) fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs (sgRNAs), resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

5.
Mol Cell Proteomics ; 22(5): 100542, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024090

RESUMO

The molecular mechanisms and pathways enabling certain individuals to remain cognitively normal despite high levels of Alzheimer's disease (AD) pathology remain incompletely understood. These cognitively normal people with AD pathology are described as preclinical or asymptomatic AD (AsymAD) and appear to exhibit cognitive resilience to the clinical manifestations of AD dementia. Here we present a comprehensive network-based approach from cases clinically and pathologically defined as asymptomatic AD to map resilience-associated pathways and extend mechanistic validation. Multiplex tandem mass tag MS (TMT-MS) proteomic data (n = 7787 proteins) was generated on brain tissue from Brodmann area 6 and Brodmann area 37 (n = 109 cases, n = 218 total samples) and evaluated by consensus weighted gene correlation network analysis. Notably, neuritin (NRN1), a neurotrophic factor previously linked to cognitive resilience, was identified as a hub protein in a module associated with synaptic biology. To validate the function of NRN1 with regard to the neurobiology of AD, we conducted microscopy and physiology experiments in a cellular model of AD. NRN1 provided dendritic spine resilience against amyloid-ß (Aß) and blocked Aß-induced neuronal hyperexcitability in cultured neurons. To better understand the molecular mechanisms of resilience to Aß provided by NRN1, we assessed how exogenous NRN1 alters the proteome by TMT-MS (n = 8238 proteins) of cultured neurons and integrated the results with the AD brain network. This revealed overlapping synapse-related biology that linked NRN1-induced changes in cultured neurons with human pathways associated with cognitive resilience. Collectively, this highlights the utility of integrating the proteome from the human brain and model systems to advance our understanding of resilience-promoting mechanisms and prioritize therapeutic targets that mediate resilience to AD.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Neuropeptídeos/metabolismo , Proteínas Ligadas por GPI/metabolismo
6.
J Neurosci ; 43(20): 3764-3785, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37055180

RESUMO

Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Córtex Entorrinal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Espinhas Dendríticas/metabolismo , Proteômica
7.
Neuroscience ; 498: 1-18, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35752428

RESUMO

Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology. Despite the array of technological advances, including iontophoretic microinjection of Lucifer yellow (LY) fluorescent dye, Golgi staining continues to be one of the most popular approaches to visualize dendritic spines. Here, we compared dendritic spine density and morphology among pyramidal neurons in layers 2/3 of the mouse medial prefrontal cortex (mPFC) and pyramidal neurons in hippocampal CA1 using three-dimensional digital reconstructions of (1) brightfield microscopy z-stacks of Golgi-impregnated dendrites and (2) confocal microscopy z-stacks of LY-filled dendrites. Analysis of spine density revealed that the LY microinjection approach enabled detection of approximately three times as many spines as the Golgi staining approach in both brain regions. Spine volume measurements were larger using Golgi staining compared to LY microinjection in both mPFC and CA1. Spine length was mostly comparable between techniques in both regions. In the mPFC, head diameter was similar for Golgi staining and LY microinjection. However, in CA1, head diameter was approximately 50% smaller on LY-filled dendrites compared to Golgi staining. These results indicate that Golgi staining and LY microinjection yield different spine density and morphology measurements, with Golgi staining failing to detect dendritic spines and overestimating spine size.


Assuntos
Espinhas Dendríticas , Células Piramidais , Animais , Dendritos , Hipocampo , Isoquinolinas , Camundongos
8.
Mol Brain ; 14(1): 169, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794469

RESUMO

Rho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light-dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.


Assuntos
Espinhas Dendríticas , Células Piramidais , Animais , Ansiedade , Região CA1 Hipocampal , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Camundongos , Células Piramidais/metabolismo , Quinases Associadas a rho/metabolismo
9.
Front Cell Neurosci ; 15: 636017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790742

RESUMO

Rho-associated coiled-coil containing kinase isoform 2 (ROCK2) is a member of the AGC family of serine/threonine kinases and an extensively studied regulator of actin-mediated cytoskeleton contractility. Over the past decade, new evidence has emerged that suggests ROCK2 regulates autophagy. Recent studies indicate that dysregulation of autophagy contributes to the development of misfolded tau aggregates among entorhinal cortex (EC) excitatory neurons in early Alzheimer's disease (AD). While the accumulation of tau oligomers and fibrils is toxic to neurons, autophagy facilitates the degradation of these pathologic species and represents a major cellular pathway for tau disposal in neurons. ROCK2 is expressed in excitatory neurons and pharmacologic inhibition of ROCK2 can induce autophagy pathways. In this mini-review, we explore potential mechanisms by which ROCK2 mediates autophagy and actin dynamics and discuss how these pathways represent therapeutic avenues for Alzheimer's disease.

10.
Neuroscience ; 455: 195-211, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33346120

RESUMO

Synapse or dendritic spine loss is the strongest correlate of cognitive decline in Alzheimer's disease (AD), and neurofibrillary tangles (NFTs), but not amyloid-ß plaques, associate more closely with transition to mild cognitive impairment. Yet, how dendritic spine architecture is affected by hyperphosphorylated tau is still an ongoing question. To address this, we combined cell and biochemical analyses of the Tau P301S mouse line (PS19). Individual pyramidal neurons in the hippocampus and medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D morphometry analysis. In the hippocampus, PS19 mice and non-transgenic (NTG) littermates displayed equivalent spine density at 6 and 9 months, but both genotypes exhibited age-related thin spine loss. PS19 mice exhibited significant increases in synaptic tau protein levels and mean dendritic spine head diameter with age. This suggests that CA1 pyramidal neurons in PS19 mice may undergo spine remodeling in response to tau accumulation and age. In the mPFC, spine density was similar among PS19 mice and NTG littermates at 6 and 9 months, but age-related reductions in synaptic tau levels were observed among PS19 mice. Collectively, these studies reveal brain region-specific changes in dendritic spine density and morphology in response to age and the presence of hyperphosphorylated tau in the PS19 mouse line.


Assuntos
Doença de Alzheimer , Espinhas Dendríticas , Tauopatias , Proteínas tau , Animais , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Neuroscientist ; 27(5): 487-505, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812494

RESUMO

Cognitive resilience is often defined as the ability to remain cognitively normal in the face of insults to the brain. These insults can include disease pathology, such as plaques and tangles associated with Alzheimer's disease, stroke, traumatic brain injury, or other lesions. Factors such as physical or mental activity and genetics may contribute to cognitive resilience, but the neurobiological underpinnings remain ill-defined. Emerging evidence suggests that dendritic spine structural plasticity is one plausible mechanism. In this review, we highlight the basic structure and function of dendritic spines and discuss how spine density and morphology change in aging and Alzheimer's disease. We note evidence that spine plasticity mediates resilience to stress, and we tackle dendritic spines in the context of cognitive resilience to Alzheimer's disease. Finally, we examine how lifestyle and genetic factors may influence dendritic spine plasticity to promote cognitive resilience before discussing evidence for actin regulatory kinases as therapeutic targets for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Espinhas Dendríticas , Envelhecimento , Encéfalo , Cognição , Humanos
12.
Front Cell Dev Biol ; 8: 562662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042997

RESUMO

Developing strategies to maintain cognitive health is critical to quality of life during aging. The basis of healthy cognitive aging is poorly understood; thus, it is difficult to predict who will have normal cognition later in life. Individuals may have higher baseline functioning (cognitive reserve) and others may maintain or even improve with age (cognitive resilience). Understanding the mechanisms underlying cognitive reserve and resilience may hold the key to new therapeutic strategies for maintaining cognitive health. However, reserve and resilience have been inconsistently defined in human studies. Additionally, our understanding of the molecular and cellular bases of these phenomena is poor, compounded by a lack of longitudinal molecular and cognitive data that fully capture the dynamic trajectories of cognitive aging. Here, we used a genetically diverse mouse population (B6-BXDs) to characterize individual differences in cognitive abilities in adulthood and investigate evidence of cognitive reserve and/or resilience in middle-aged mice. We tested cognitive function at two ages (6 months and 14 months) using y-maze and contextual fear conditioning. We observed heritable variation in performance on these traits (h 2 RIx̄ = 0.51-0.74), suggesting moderate to strong genetic control depending on the cognitive domain. Due to the polygenetic nature of cognitive function, we did not find QTLs significantly associated with y-maze, contextual fear acquisition (CFA) or memory, or decline in cognitive function at the genome-wide level. To more precisely interrogate the molecular regulation of variation in these traits, we employed RNA-seq and identified gene networks related to transcription/translation, cellular metabolism, and neuronal function that were associated with working memory, contextual fear memory, and cognitive decline. Using this method, we nominate the Trio gene as a modulator of working memory ability. Finally, we propose a conceptual framework for identifying strains exhibiting cognitive reserve and/or resilience to assess whether these traits can be observed in middle-aged B6-BXDs. Though we found that earlier cognitive reserve evident early in life protects against cognitive impairment later in life, cognitive performance and age-related decline fell along a continuum, with no clear genotypes emerging as exemplars of exceptional reserve or resilience - leading to recommendations for future use of aging mouse populations to understand the nature of cognitive reserve and resilience.

13.
Cell Rep ; 32(9): 108091, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877673

RESUMO

Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer's dementia (AD), and GWAS results in African Americans. We find an association between Dlgap2 and AD phenotypes at the variant, gene and protein expression, and methylation levels. Lower cortical DLGAP2 expression is observed in AD and is associated with more plaques and tangles at autopsy and faster cognitive decline. Results will inform future studies aimed at investigating the cross-species role of Dlgap2 in regulating cognitive decline and highlight the benefit of using genetically diverse mice to prioritize novel candidates.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Demência/genética , Proteínas do Tecido Nervoso/metabolismo , Negro ou Afro-Americano/genética , Fatores Etários , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade da Espécie
14.
Biol Psychiatry ; 87(6): 577-587, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378303

RESUMO

BACKGROUND: Epigenetic mechanisms are critical for hippocampus-dependent memory formation. Building on previous studies that implicate the N-lysine methyltransferase SETD6 in the activation of nuclear factor-κB RELA (also known as transcription factor p65) as an epigenetic recruiter, we hypothesized that SETD6 is a key player in the epigenetic control of long-term memory. METHODS: Using a series of molecular, biochemical, imaging, electrophysiological, and behavioral experiments, we interrogated the effects of short interfering RNA-mediated knockdown of Setd6 in the rat dorsal hippocampus during memory consolidation. RESULTS: Our findings demonstrate that SETD6 is necessary for memory-related nuclear factor-κB RELA methylation at lysine 310 and associated increases in H3K9me2 (histone H3 lysine 9 dimethylation) in the dorsal hippocampus and that SETD6 knockdown interferes with memory consolidation, alters gene expression patterns, and disrupts spine morphology. CONCLUSIONS: Together, these findings suggest that SETD6 plays a critical role in memory formation and may act as an upstream initiator of H3K9me2 changes in the hippocampus during memory consolidation.


Assuntos
Hipocampo , Memória , Animais , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Metilação , Ratos
15.
Behav Brain Res ; 373: 112083, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31302146

RESUMO

Twenty-nine protein kinase inhibitors have been used to treat human diseases. Out of these, two are Rho-associated protein kinase (ROCK) 1 and 2 inhibitors. The ROCKs heavily influence neuronal architecture and structural plasticity, and ROCKs are putative drug targets for various brain disorders. While the pan-ROCK inhibitor Fasudil has been clinically approved to treat hypertension, heart failure, glaucoma, spinal cord injury, and stroke, a barrier to progress on this therapeutic avenue is the lack of experimental comparisons between pharmacologic and genetic manipulation of ROCKs. Our study begins to address this question using parallel approaches to study behavior in mice that were treated with Fasudil or were heterozygous for ROCK1 or ROCK2. Adult mice treated with Fasudil for thirty days displayed reduced time spent in the open arms of the elevated plus maze, whereas activity in the open field was more analogous to mock-treated animals. Both male and female adult ROCK1+/- and ROCK2+/- mice exhibited reduced time spent in open arms of the elevated plus maze compared to littermate controls. However, ROCK1 or ROCK2 heterozygosity did not alter performance in the open field or Y-maze. These results indicate that chronic treatment with Fasudil induces anxiety-like behaviors that are likely the consequence of ROCK1 and/or ROCK2 inhibition. Our findings may have implications for several ongoing clinical trials using Fasudil or other ROCK-based therapeutics.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Ansiedade/etiologia , Quinases Associadas a rho/deficiência , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/genética , Ansiedade/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Inibidores de Proteínas Quinases , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
16.
Sci Signal ; 12(587)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239325

RESUMO

Alzheimer's disease (AD) therapies predominantly focus on ß-amyloid (Aß), but Aß effects may be maximal before clinical symptoms appear. Downstream of Aß, dendritic spine loss correlates most strongly with cognitive decline in AD. Rho-associated kinases (ROCK1 and ROCK2) regulate the actin cytoskeleton, and ROCK1 and ROCK2 protein abundances are increased in early AD. Here, we found that the increased abundance of ROCK1 in cultured primary rat hippocampal neurons reduced dendritic spine length through a myosin-based pathway, whereas the increased abundance of ROCK2 induced spine loss through the serine and threonine kinase LIMK1. Aß42 oligomers can activate ROCKs. Here, using static imaging studies combined with multielectrode array analyses, we found that the ROCK2-LIMK1 pathway mediated Aß42-induced spine degeneration and neuronal hyperexcitability. Live-cell microscopy revealed that pharmacologic inhibition of LIMK1 rendered dendritic spines resilient to Aß42 oligomers. Treatment of hAPP mice with a LIMK1 inhibitor rescued Aß-induced hippocampal spine loss and morphologic aberrations. Our data suggest that therapeutically targeting LIMK1 may provide dendritic spine resilience to Aß and therefore may benefit cognitively normal patients that are at high risk for developing dementia.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Espinhas Dendríticas/enzimologia , Quinases Lim/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
17.
Mol Cell Neurosci ; 98: 1-11, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991103

RESUMO

Klotho-deficient mice rapidly develop cognitive impairment and show some evidence of the onset of neurodegeneration. However, it is impossible to investigate the long-term consequences on the brain because of the dramatic shortening of lifespan caused by systemic klotho deficiency. As klotho expression is downregulated with advancing organismal age, understanding the mechanisms of klotho action is important for developing novel strategies to support healthy brain aging. Previously, we reported that klotho-deficient mice show enhanced long-term potentiation prior to the onset of cognitive impairment. To inform this unusual phenotype, herein, we examined neuronal structure and in vitro synaptic function. Our results indicate that klotho deficiency causes the population of dendritic spines to shift towards increased head diameter and decreased length consistent with mature, mushroom type spines. Multi-electrode array recordings from klotho-deficient neurons show increased synchronous firing and activity changes reflective of increased neuronal network activity. Supplementation of the neuronal growth media with recombinant shed klotho corrected some but not all of the activity changes caused by klotho deficiency. Last, in vivo we found that klotho-deficient mice have a decreased latency to induced seizure activity. Together these data show that klotho-deficient memory impairments are underpinned by structural and functional changes that may preclude ongoing normal cognition.


Assuntos
Espinhas Dendríticas/fisiologia , Glucuronidase/genética , Convulsões/genética , Potenciais Sinápticos , Animais , Células Cultivadas , Espinhas Dendríticas/patologia , Glucuronidase/deficiência , Glucuronidase/metabolismo , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação , Convulsões/fisiopatologia
18.
Neurobiol Aging ; 73: 92-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339964

RESUMO

Subtle alterations in dendritic spine morphology can induce marked effects on connectivity patterns of neuronal circuits and subsequent cognitive behavior. Past studies of rodent and nonhuman primate aging revealed reductions in spine density with concomitant alterations in spine morphology among pyramidal neurons in the prefrontal cortex. In this report, we visualized and digitally reconstructed the three-dimensional morphology of dendritic spines from the dorsolateral prefrontal cortex in cognitively normal individuals aged 40-94 years. Linear models defined relationships between spines and age, Mini-Mental State Examination, apolipoprotein E (APOE) ε4 allele status, and Alzheimer's disease (AD) pathology. Similar to findings in other mammals, spine density correlated negatively with human aging. Reduced spine head diameter associated with higher Mini-Mental State Examination scores. Individuals harboring an APOE ε4 allele displayed greater numbers of dendritic filopodia and structural alterations in thin spines. The presence of AD pathology correlated with increased spine length, reduced thin spine head diameter, and increased filopodia density. Our study reveals how spine morphology in the prefrontal cortex changes in human aging and highlights key structural alterations in selective spine populations that may promote cognitively normal function despite harboring the APOE ε4 allele or AD pathology.


Assuntos
Doença de Alzheimer/patologia , Cognição , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Predisposição Genética para Doença/genética , Plasticidade Neuronal , Córtex Pré-Frontal/patologia , Adulto , Idoso , Envelhecimento , Apolipoproteína E4 , Envelhecimento Cognitivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/diagnóstico por imagem
19.
Brain Struct Funct ; 223(9): 4227-4241, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30196430

RESUMO

Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.


Assuntos
Espinhas Dendríticas/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Quinases Associadas a rho/fisiologia , Animais , Feminino , Imageamento Tridimensional , Masculino , Camundongos Transgênicos , Neurônios/citologia , Isoformas de Proteínas/fisiologia
20.
Acta Neuropathol Commun ; 6(1): 35, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716652

RESUMO

Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , alfa-Sinucleína/toxicidade , Animais , Cálcio/metabolismo , Células Cultivadas , Endotoxinas/toxicidade , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Picrotoxina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Tetrodotoxina/farmacologia , Transdução Genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA