Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 11(12): 8295-8309, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188887

RESUMO

Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb-weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider's diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.

2.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094542

RESUMO

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Ecologia , Humanos , Plantas
3.
Glob Chang Biol ; 25(11): 3625-3641, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301199

RESUMO

Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change.


Assuntos
Ecossistema , Florestas , Biodiversidade , Árvores
4.
Ecology ; 100(4): e02653, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30870588

RESUMO

Forest fragments in highly disturbed landscapes provide important ecosystem services ranging from acting as biodiversity reservoir to providing timber or regulating hydrology. Managing the tree species richness and composition of these fragments to optimize their functioning and the deliverance of multiple ecosystem services is of great practical relevance. However, both the strength and direction of tree species richness and tree species composition effects on forest ecosystem multifunctionality may depend on the landscape context in which these forest remnants are embedded. Taking advantage of an observatory network of 53 temperate forest plots varying in tree species richness, tree species composition, and fragmentation intensity we measured 24 ecosystem functions spanning multiple trophic levels and analyzed how tree species diversity-multifunctionality relationships changed with fragmentation intensity. Our results show that fragmentation generally increases multifunctionality and strengthens its positive relationship with diversity, possibly due to edge effects. In addition, different tree species combinations optimize functioning under different fragmentation levels. We conclude that management and restoration of forest fragments aimed at maximizing ecosystem multifunctionality should be tailored to the specific landscape context. As forest fragmentation will continue, tree diversity will become increasingly important to maintain forest functioning.


Assuntos
Ecossistema , Árvores , Biodiversidade
5.
Nat Commun ; 10(1): 1460, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926809

RESUMO

Humans modify ecosystems and biodiversity worldwide, with negative consequences for ecosystem functioning. Promoting plant diversity is increasingly suggested as a mitigation strategy. However, our mechanistic understanding of how plant diversity affects the diversity of heterotrophic consumer communities remains limited. Here, we disentangle the relative importance of key components of plant diversity as drivers of herbivore, predator, and parasitoid species richness in experimental forests and grasslands. We find that plant species richness effects on consumer species richness are consistently positive and mediated by elevated structural and functional diversity of the plant communities. The importance of these diversity components differs across trophic levels and ecosystems, cautioning against ignoring the fundamental ecological complexity of biodiversity effects. Importantly, plant diversity effects on higher trophic-level species richness are in many cases mediated by modifications of consumer abundances. In light of recently reported drastic declines in insect abundances, our study identifies important pathways connecting plant diversity and consumer diversity across ecosystems.


Assuntos
Biodiversidade , Plantas , Animais , Artrópodes/fisiologia , Especificidade da Espécie
6.
PLoS One ; 11(11): e0152777, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27851761

RESUMO

Climate change is projected to increase the frequency of extreme events, such as flooding and droughts, which are anticipated to have negative effects on the biodiversity of primary producers and consequently the associated consumer communities. Here we assessed the effects of an extreme early summer flooding event in 2013 on ant colonies along an experimental gradient of plant species richness in a temperate grassland. We tested the effects of flood duration, plant species richness, plant cover, soil temperature, and soil porosity on ant occurrence and abundance. We found that the ant community was dominated by Lasius niger, whose presence and abundance after the flood was not significantly affected by any of the tested variables, including plant species richness. We found the same level of occupation by L. niger at the field site after the flood (surveyed in 2013) as before the flood (surveyed in 2006). Thus, there were no negative effects of the flood on the presence of L. niger in the plots. We can exclude recolonisation as a possible explanation of ant presence in the field site due to the short time period between the end of the flood and survey as well as to the absence of a spatial pattern in the occupancy data. Thus, the omnipresence of this dominant ant species 1 month after the flood indicates that the colonies were able to survive a 3-week summer flood. The observed ant species proved to be flood resistant despite experiencing such extreme climatic events very rarely.


Assuntos
Formigas/fisiologia , Inundações , Pradaria , Estações do Ano , Animais , Biodiversidade , Europa (Continente) , Porosidade , Solo , Temperatura
7.
PLoS One ; 11(2): e0148768, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859496

RESUMO

Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Pradaria , Plantas , Animais , Biomassa , Carnivoridade , Ecossistema , Alemanha , Herbivoria , Modelos Lineares , Modelos Biológicos , Especificidade da Espécie
8.
Bull Entomol Res ; 104(4): 471-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24622151

RESUMO

In France, during the summer, cattle in mountainous pastures can be highly exposed to tabanid bites. The persistent biting behaviour of tabanids not only causes disturbance, but is also responsible for transmitting diseases, such as bovine besnoitiosis. The purpose of this study was to better identify the level of tabanid annoyance on cattle by means of insect trapping and direct observation of cows. Tabanids were active during the entire daily observation period (10:00-16:00), except for Haematopota sp., which were less active in the morning. The tabanids collected in Nzi traps were generally representative of those that landed on cattle, except for Haematopota sp., as Nzi traps were not very effective for these species. The preferred feeding sites for most species appeared to be cow's legs or udder. Leg stamping was the defensive reaction most related to a tabanid alighting on a host. Generalized linear mixed models showed that the parameters associated with tabanid landings on hosts were related to weather and altitude, but not to landscape structure. Increased landings were mostly associated with the higher temperatures and lower wind speeds at midday, but some differences were observed between species. The results indicate that cattle-protection measures should be taken during the peak of tabanid abundance when climatic conditions favour intense biting activity. Nzi traps set close to livestock were very effective to catch tabanids and could help in reducing the annoyance caused by horse flies.


Assuntos
Altitude , Bovinos/parasitologia , Dípteros/fisiologia , Comportamento Alimentar/fisiologia , Animais , França , Modelos Lineares , Observação , Dinâmica Populacional , Manejo de Espécimes/métodos , Estatísticas não Paramétricas , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA