Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3938, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729928

RESUMO

Energy transition scenarios are characterized by increasing electrification and improving efficiency of energy end uses, rapid decarbonization of the electric power sector, and deployment of carbon dioxide removal (CDR) technologies to offset remaining emissions. Although hydrocarbon fuels typically decline in such scenarios, significant volumes remain in many scenarios even at the time of net-zero emissions. While scenarios rely on different approaches for decarbonizing remaining fuels, the underlying drivers for these differences are unclear. Here we develop several illustrative net-zero systems in a simple structural energy model and show that, for a given set of final energy demands, assumptions about the use of biomass and CO2 sequestration drive key differences in how emissions from remaining fuels are mitigated. Limiting one resource may increase reliance on another, implying that decisions about using or restricting resources in pursuit of net-zero objectives could have significant tradeoffs that will need to be evaluated and managed.

3.
Bioresour Technol ; 183: 1-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710677

RESUMO

The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment.


Assuntos
Biocombustíveis , Biomassa , Panicum/química , Pinus taeda/química , Meios de Transporte , Poluentes Atmosféricos/análise , Biocombustíveis/economia , Custos e Análise de Custo , Florestas , Efeito Estufa , Modelos Teóricos , Navios , Termodinâmica , Meios de Transporte/economia , Madeira/economia
4.
Environ Sci Technol ; 48(14): 7723-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24960207

RESUMO

On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.


Assuntos
Dióxido de Carbono/análise , Combustíveis Fósseis , Centrais Elétricas , Dióxido de Carbono/economia , Carvão Mineral/análise , Carvão Mineral/economia , Custos e Análise de Custo , Eletricidade , Combustíveis Fósseis/economia , Gás Natural/economia , Centrais Elétricas/economia , Estados Unidos , United States Environmental Protection Agency
6.
Proc Natl Acad Sci U S A ; 109(14): 5185-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431639

RESUMO

In carbon capture and storage (CCS), CO(2) is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO(2) injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO(2) production. We show that in the United States, if CO(2) production from power generation continues to rise at recent rates, then CCS can store enough CO(2) to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

7.
Proc Natl Acad Sci U S A ; 108(51): 20428-33, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22143760

RESUMO

Capturing carbon dioxide from the atmosphere ("air capture") in an industrial process has been proposed as an option for stabilizing global CO(2) concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO(2), making it cost competitive with mainstream CO(2) mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO(2) emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO(2) from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO(2), requiring it to be powered by CO(2)-neutral power sources in order to be CO(2) negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO(2), based on experience with as-built large-scale trace gas removal systems.


Assuntos
Poluição do Ar , Ar/análise , Dióxido de Carbono/química , Biomassa , Recuperação e Remediação Ambiental/métodos , Gases , Modelos Estatísticos , Energia Renovável , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA