Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559035

RESUMO

Background: Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods: Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results: Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1ß,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion: These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism.

2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328082

RESUMO

Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer.

3.
Nat Commun ; 14(1): 2840, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202423

RESUMO

Giardia lamblia (Giardia) is among the most common intestinal pathogens in children in low- and middle-income countries (LMICs). Although Giardia associates with early-life linear growth restriction, mechanistic explanations for Giardia-associated growth impairments remain elusive. Unlike other intestinal pathogens associated with constrained linear growth that cause intestinal or systemic inflammation or both, Giardia seldom associates with chronic inflammation in these children. Here we leverage the MAL-ED longitudinal birth cohort and a model of Giardia mono-association in gnotobiotic and immunodeficient mice to propose an alternative pathogenesis of this parasite. In children, Giardia results in linear growth deficits and gut permeability that are dose-dependent and independent of intestinal markers of inflammation. The estimates of these findings vary between children in different MAL-ED sites. In a representative site, where Giardia associates with growth restriction, infected children demonstrate broad amino acid deficiencies, and overproduction of specific phenolic acids, byproducts of intestinal bacterial amino acid metabolism. Gnotobiotic mice require specific nutritional and environmental conditions to recapitulate these findings, and immunodeficient mice confirm a pathway independent of chronic T/B cell inflammation. Taken together, we propose a new paradigm that Giardia-mediated growth faltering is contingent upon a convergence of this intestinal protozoa with nutritional and intestinal bacterial factors.


Assuntos
Giardíase , Doenças Inflamatórias Intestinais , Camundongos , Animais , Giardia , Giardíase/parasitologia , Nutrientes , Inflamação/complicações , Aminoácidos
4.
Cell Rep ; 41(7): 111637, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384110

RESUMO

Endoplasmic reticulum (ER) stress is associated with Crohn's disease (CD), but its impact on host-microbe interaction in disease pathogenesis is not well defined. Functional deficiency in the protein disulfide isomerase anterior gradient 2 (AGR2) has been linked with CD and leads to epithelial cell ER stress and ileocolitis in mice and humans. Here, we show that ileal expression of AGR2 correlates with mucosal Enterobactericeae abundance in human inflammatory bowel disease (IBD) and that Agr2 deletion leads to ER-stress-dependent expansion of mucosal-associated adherent-invasive Escherichia coli (AIEC), which drives Th17 cell ileocolitis in mice. Mechanistically, our data reveal that AIEC-induced epithelial cell ER stress triggers CD103+ dendritic cell production of interleukin-23 (IL-23) and that IL-23R is required for ileocolitis in Agr2-/- mice. Overall, these data reveal a specific and reciprocal interaction of the expansion of the CD pathobiont AIEC with ER-stress-associated ileocolitis and highlight a distinct cellular mechanism for IL-23-dependent ileocolitis.


Assuntos
Doença de Crohn , Disbiose , Infecções por Escherichia coli , Mucoproteínas , Animais , Humanos , Camundongos , Doença de Crohn/genética , Doença de Crohn/microbiologia , Células Dendríticas , Escherichia coli , Interleucina-23 , Mucoproteínas/genética , Proteínas Oncogênicas
5.
Nat Commun ; 13(1): 6198, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261423

RESUMO

Alcohol use disorder is a major cause of morbidity, which requires newer treatment approaches. We previously showed in a randomized clinical trial that alcohol craving and consumption reduces after fecal transplantation. Here, to determine if this could be transmitted through microbial transfer, germ-free male C57BL/6 mice received stool or sterile supernatants collected from the trial participants pre-/post-fecal transplant. We found that mice colonized with post-fecal transplant stool but not supernatants reduced ethanol acceptance, intake and preference versus pre-fecal transplant colonized mice. Microbial taxa that were higher in post-fecal transplant humans were also associated with lower murine alcohol intake and preference. A majority of the differentially expressed genes (immune response, inflammation, oxidative stress response, and epithelial cell proliferation) occurred in the intestine rather than the liver and prefrontal cortex. These findings suggest a potential for therapeutically targeting gut microbiota and the microbial-intestinal interface to alter gut-liver-brain axis and reduce alcohol consumption in humans.


Assuntos
Alcoolismo , Transplante de Microbiota Fecal , Humanos , Camundongos , Animais , Masculino , Alcoolismo/terapia , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas , Etanol
6.
Front Microbiol ; 13: 936083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935217

RESUMO

Escherichia coli and Enterococcus faecalis have been implicated as important players in human gut health that have been associated with the onset of inflammatory bowel disease (IBD). Bacteriophage (phage) therapy has been used for decades to target pathogens as an alternative to antibiotics, but the ability of phage to shape complex bacterial consortia in the lower gastrointestinal tract is not clearly understood. We administered a cocktail of six phages (either viable or heat-inactivated) targeting pro-inflammatory Escherichia coli LF82 and Enterococcus faecalis OG1RF as members of a defined community in both a continuous fermenter and a murine colitis model. The two target strains were members of a six species simplified human microbiome consortium (SIHUMI-6). In a 72-h continuous fermentation, the phage cocktail caused a 1.1 and 1.5 log (log10 genome copies/mL) reduction in E. faecalis and E. coli numbers, respectively. This interaction was accompanied by changes in the numbers of other SIHUMI-6 members, with an increase of Lactiplantibacillus plantarum (1.7 log) and Faecalibacterium prausnitzii (1.8 log). However, in germ-free mice colonized by the same bacterial consortium, the same phage cocktail administered twice a week over nine weeks did not cause a significant reduction of the target strains. Mice treated with active or inactive phage had similar levels of pro-inflammatory cytokines (IFN-y/IL12p40) in unstimulated colorectal colonic strip cultures. However, histology scores of the murine lower GIT (cecum and distal colon) were lower in the viable phage-treated mice, suggesting that the phage cocktail did influence the functionality of the SIHUMI-6 consortium. For this study, we conclude that the observed potential of phages to reduce host populations in in vitro models did not translate to a similar outcome in an in vivo setting, with this effect likely brought about by the reduction of phage numbers during transit of the mouse GIT.

7.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35413017

RESUMO

Elucidating how resident enteric bacteria interact with their hosts to promote health or inflammation is of central importance to diarrheal and inflammatory bowel diseases across species. Here, we integrated the microbial and chemical microenvironment of a patient's ileal mucosa with their clinical phenotype and genotype to identify factors favoring the growth and virulence of adherent and invasive E. coli (AIEC) linked to Crohn's disease. We determined that the ileal niche of AIEC was characterized by inflammation, dysbiosis, coculture of Enterococcus, and oxidative stress. We discovered that mucosal metabolites supported general growth of ileal E. coli, with a selective effect of ethanolamine on AIEC that was augmented by cometabolism of ileitis-associated amino acids and glutathione and by symbiosis-associated fucose. This metabolic plasticity was facilitated by the eut and pdu microcompartments, amino acid metabolism, γ-glutamyl-cycle, and pleiotropic stress responses. We linked metabolism to virulence and found that ethanolamine and glutamine enhanced AIEC motility, infectivity, and proinflammatory responses in vitro. We connected use of ethanolamine to intestinal inflammation and L-fuculose phosphate aldolase (fucA) to symbiosis in AIEC monoassociated IL10-/- mice. Collectively, we established that AIEC were pathoadapted to utilize mucosal metabolites associated with health and inflammation for growth and virulence, enabling the transition from symbiont to pathogen in a susceptible host.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Animais , Aderência Bacteriana , Doença de Crohn/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Etanolaminas/metabolismo , Promoção da Saúde , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Virulência
8.
Front Immunol ; 13: 856966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401533

RESUMO

Introduction: In colitis, macrophage functionality is altered compared to normal homeostatic conditions. Loss of IL-10 signaling results in an inappropriate chronic inflammatory response to bacterial stimulation. It remains unknown if inhibition of bromodomain and extra-terminal domain (BET) proteins alters usage of DNA regulatory elements responsible for driving inflammatory gene expression. We determined if the BET inhibitor, (+)-JQ1, could suppress inflammatory activation of macrophages in Il10-/- mice. Methods: We performed ATAC-seq and RNA-seq on Il10-/- bone marrow-derived macrophages (BMDMs) cultured in the presence and absence of lipopolysaccharide (LPS) with and without treatment with (+)-JQ1 and evaluated changes in chromatin accessibility and gene expression. Germ-free Il10-/- mice were treated with (+)-JQ1, colonized with fecal slurries and underwent histological and molecular evaluation 14-days post colonization. Results: Treatment with (+)-JQ1 suppressed LPS-induced changes in chromatin at distal regulatory elements associated with inflammatory genes, particularly in regions that contain motifs for AP-1 and IRF transcription factors. This resulted in attenuation of inflammatory gene expression. Treatment with (+)-JQ1 in vivo resulted in a mild reduction in colitis severity as compared with vehicle-treated mice. Conclusion: We identified the mechanism of action associated with a new class of compounds that may mitigate aberrant macrophage responses to bacteria in colitis.


Assuntos
Colite , Microbiota , Animais , Cromatina/genética , Cromatina/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Fatores de Transcrição/metabolismo
9.
Nutrients ; 13(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684567

RESUMO

Commonly used synthetic dietary emulsifiers, including carboxymethylcellulose (CMC) and polysorbate-80 (P80), promote intestinal inflammation. We compared abilities of CMC vs. P80 to potentiate colitis and impact human microbiota in an inflammatory environment using a novel colitis model of ex-germ-free (GF) IL10-/- mice colonized by pooled fecal transplant from three patients with active inflammatory bowel diseases. After three days, mice received 1% CMC or P80 in drinking water or water alone for four weeks. Inflammation was quantified by serial fecal lipocalin 2 (Lcn-2) and after four weeks by blinded colonic histologic scores and colonic inflammatory cytokine gene expression. Microbiota profiles in cecal contents were determined by shotgun metagenomic sequencing. CMC treatment significantly increased fecal Lcn-2 levels compared to P80 and water treatment by one week and throughout the experiment. Likewise, CMC treatment increased histologic inflammatory scores and colonic inflammatory cytokine gene expression compared with P80 and water controls. The two emulsifiers differentially affected specific intestinal microbiota. CMC did not impact bacterial composition but significantly decreased Caudoviricetes (bacteriophages), while P80 exposure non-significantly increased the abundance of both Actinobacteria and Proteobacteria. Commonly used dietary emulsifiers have different abilities to induce colitis in humanized mice. CMC promotes more aggressive inflammation without changing bacterial composition.


Assuntos
Carboximetilcelulose Sódica/efeitos adversos , Colite/induzido quimicamente , Colite/microbiologia , Emulsificantes/efeitos adversos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Polissorbatos/efeitos adversos , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Colite/patologia , Colo/metabolismo , Colo/patologia , Fezes/microbiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Methods Mol Biol ; 2270: 341-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479908

RESUMO

Although the inflammatory cytokine IL-10 is pivotal in regulatory B-cell function, detecting IL-10-producing B cells by intracellular IL-10 staining requires multiple steps and tedious preparation. In contrast, the Il10-eGFP reporter mouse model (VertX), generated in 2009, allows easier and quicker detection of IL-10-producing B cells with the possibility of sorting viable cells without membrane permeabilization and ex vivo activation. Even though detecting IL-10+ cells is simpler, several nuances are important. For example, methanol-containing buffers delete GFP signal, while long-term fixation can maintain GFP intensity but decreases other intracellular signals (FOXP3, etc.). Here, we provide optimized and improved protocols for GFP detection in intestinal B cells and isolation techniques of lamina propria, spleen, mesenteric lymph node, peritoneum, and blood cells from VertX mice.


Assuntos
Linfócitos B Reguladores/patologia , Genes Reporter/genética , Interleucina-10/análise , Animais , Linfócitos B Reguladores/citologia , Linfócitos B Reguladores/imunologia , Colite/patologia , Citocinas , Feminino , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Interleucina-10/imunologia , Intestinos/patologia , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Baço/citologia , Linfócitos T Reguladores/patologia
11.
Cell Mol Gastroenterol Hepatol ; 11(2): 525-550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32961355

RESUMO

BACKGROUND & AIMS: The incidence of inflammatory bowel diseases has increased over the last half century, suggesting a role for dietary factors. Fructose consumption has increased in recent years. Recently, a high fructose diet (HFrD) was shown to enhance dextran sodium sulfate (DSS)-induced colitis in mice. The primary objectives of the current study were to elucidate the mechanism(s) underlying the pro-colitic effects of dietary fructose and to determine whether this effect occurs in both microbially driven and genetic models of colitis. METHODS: Antibiotics and germ-free mice were used to determine the relevance of microbes for HFrD-induced worsening of colitis. Mucus thickness and quality were determined by histologic analyses. 16S rRNA profiling, in situ hybridization, metatranscriptomic analyses, and fecal metabolomics were used to determine microbial composition, spatial distribution, and metabolism. The significance of HFrD on pathogen and genetic-driven models of colitis was determined by using Citrobacter rodentium infection and Il10-/- mice, respectively. RESULTS: Reducing or eliminating bacteria attenuated HFrD-mediated worsening of DSS-induced colitis. HFrD feeding enhanced access of gut luminal microbes to the colonic mucosa by reducing thickness and altering the quality of colonic mucus. Feeding a HFrD also altered gut microbial populations and metabolism including reduced protective commensal and bile salt hydrolase-expressing microbes and increased luminal conjugated bile acids. Administration of conjugated bile acids to mice worsened DSS-induced colitis. The HFrD also worsened colitis in Il10-/- mice and mice infected with C rodentium. CONCLUSIONS: Excess dietary fructose consumption has a pro-colitic effect that can be explained by changes in the composition, distribution, and metabolic function of resident enteric microbiota.


Assuntos
Colite/imunologia , Açúcares da Dieta/efeitos adversos , Frutose/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Citrobacter rodentium/patogenicidade , Colite/diagnóstico , Colite/genética , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Interleucina-10/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença
12.
Hepatology ; 71(2): 611-626, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31220352

RESUMO

Cirrhosis and hepatic encephalopathy (HE) is associated with an altered gut-liver-brain axis. Fecal microbial transplant (FMT) after antibiotics improves outcomes in HE, but the impact on brain function is unclear. The aim of this study is to determine the effect of colonization using human donors in germ-free (GF) mice on the gut-liver-brain axis. GF and conventional mice were made cirrhotic using carbon tetrachloride and compared with controls in GF and conventional state. Additional GF mice were colonized with stool from controls (Ctrl-Hum) and patients with cirrhosis (Cirr-Hum). Stools from patients with HE cirrhosis after antibiotics were pooled (pre-FMT). Stools from the same patients 15 days after FMT from a healthy donor were also pooled (post-FMT). Sterile supernatants were created from pre-FMT and post-FMT samples. GF mice were colonized using stools/sterile supernatants. For all mice, frontal cortex, liver, and small/large intestines were collected. Cortical inflammation, synaptic plasticity and gamma-aminobutyric acid (GABA) signaling, and liver inflammation and intestinal 16s ribosomal RNA microbiota sequencing were performed. Conventional cirrhotic mice had higher degrees of neuroinflammation, microglial/glial activation, GABA signaling, and intestinal dysbiosis compared with other groups. Cirr-Hum mice had greater neuroinflammation, microglial/glial activation, and GABA signaling and lower synaptic plasticity compared with Ctrl-Hum mice. This was associated with greater dysbiosis but no change in liver histology. Pre-FMT material colonization was associated with neuroinflammation and microglial activation and dysbiosis, which was reduced significantly with post-FMT samples. Sterile pre-FMT and post-FMT supernatants did not affect brain parameters. Liver inflammation was unaffected. Conclusion: Fecal microbial colonization from patients with cirrhosis results in higher degrees of neuroinflammation and activation of GABAergic and neuronal activation in mice regardless of cirrhosis compared with those from healthy humans. Reduction in neuroinflammation by using samples from post-FMT patients to colonize GF mice shows a direct effect of fecal microbiota independent of active liver inflammation or injury.


Assuntos
Córtex Cerebral , Disbiose/complicações , Encefalite/microbiologia , Encefalite/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Cirrose Hepática/microbiologia , Cirrose Hepática/terapia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cells ; 8(10)2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546615

RESUMO

The phosphoinositide 3-kinase catalytic subunit p110δ (PI3Kδ) gene maps to a human inflammatory bowel diseases (IBD) susceptibility locus, and genetic deletion of PI3Kδ signaling causes spontaneous colitis in mice. However, little is known regarding the role of PI3Kδ on IL-10-producing B cells that help regulate mucosal inflammation in IBD. We investigated the role of PI3Kδ signaling in B cell production of IL-10, following stimulation by resident bacteria and B cell regulatory function against colitis. In vitro, B cells from PI3KδD910A/D910A mice or wild-type B cells treated with PI3K specific inhibitors secreted significantly less IL-10 with greater IL-12p40 following bacterial stimulation. These B cells failed to suppress inflammatory cytokines by co-cultured microbiota-activated macrophages or CD4+ T cells. In vivo, co-transferred wild-type B cells ameliorated T cell-mediated colitis, while PI3KδD910A/D910A B cells did not confer protection from mucosal inflammation. These results indicate that PI3Kδ-signaling mediates regulatory B cell immune differentiation when stimulated with resident microbiota or their components, and is critical for induction and regulatory function of IL-10-producing B cells in intestinal homeostasis and inflammation.


Assuntos
Linfócitos B/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Enterite/genética , Interleucina-10/metabolismo , Microbiota/fisiologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Enterite/metabolismo , Enterite/microbiologia , Enterite/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Interleucina-10/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481410

RESUMO

Fibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn's disease (CD). Mechanisms that favor fibrosis are not well understood, and therapeutic strategies are limited. Here we demonstrate that colitis-susceptible Il10-deficient mice develop inflammation-associated fibrosis when monoassociated with adherent/invasive Escherichia coli (AIEC) that harbors the yersiniabactin (Ybt) pathogenicity island. Inactivation of Ybt siderophore production in AIEC nearly abrogated fibrosis development in inflamed mice. In contrast, inactivation of Ybt import through its cognate receptor FyuA enhanced fibrosis severity. This corresponded with increased colonic expression of profibrogenic genes prior to the development of histological disease, therefore suggesting causality. fyuA-deficient AIEC also exhibited greater localization within subepithelial tissues and fibrotic lesions that was dependent on Ybt biosynthesis and corresponded with increased fibroblast activation in vitro Together, these findings suggest that Ybt establishes a profibrotic environment in the host in the absence of binding to its cognate receptor and indicate a direct link between intestinal AIEC and the induction of inflammation-associated fibrosis.


Assuntos
Colite/microbiologia , Escherichia coli/metabolismo , Fibrose/etiologia , Inflamação/microbiologia , Interleucina-10/metabolismo , Fenóis/metabolismo , Tiazóis/metabolismo , Animais , Aderência Bacteriana , Colite/complicações , Colite/patologia , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Humanos , Inflamação/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout , Mutação
15.
Front Immunol ; 10: 1420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281321

RESUMO

Inflammatory bowel diseases (IBD) are associated with compositional and functional changes of the intestinal microbiota, but specific contributions of individual bacteria to chronic intestinal inflammation remain unclear. Enterococcus faecalis is a resident member of the human intestinal core microbiota that has been linked to the pathogenesis of IBD and induces chronic colitis in susceptible monoassociated IL-10-deficient (IL-10-/-) mice. In this study, we characterized the colitogenic activity of E. faecalis as part of a simplified human microbial consortium based on seven enteric bacterial strains (SIHUMI). RNA sequencing analysis of E. faecalis isolated from monoassociated wild type and IL-10-/- mice identified 408 genes including 14 genes of the ethanolamine utilization (eut) locus that were significantly up-regulated in response to inflammation. Despite considerable up-regulation of eut genes, deletion of ethanolamine utilization (ΔeutVW) had no impact on E. faecalis colitogenic activity in monoassociated IL-10-/- mice. However, replacement of the E. faecalis wild type bacteria by a ΔeutVW mutant in SIHUMI-colonized IL-10-/- mice resulted in exacerbated colitis, suggesting protective functions of E. faecalis ethanolamine utilization in complex bacterial communities. To better understand E. faecalis gene response in the presence of other microbes, we purified wild type E. faecalis cells from the colon content of SIHUMI-colonized wild type and IL-10-/- mice using immuno-magnetic separation and performed RNA sequencing. Transcriptional profiling revealed that the bacterial environment reprograms E. faecalis gene expression in response to inflammation, with the majority of differentially expressed genes not being shared between monocolonized and SIHUMI conditions. While in E. faecalis monoassociation a general bacterial stress response could be observed, expression of E. faecalis genes in SIHUMI-colonized mice was characterized by up-regulation of genes involved in growth and replication. Interestingly, in mice colonized with SIHUMI lacking E. faecalis enhanced inflammation was observed in comparison to SIHUMI-colonized mice, supporting the hypothesis that E. faecalis ethanolamine metabolism protects against colitis in complex consortia. In conclusion, this study demonstrates that complex bacterial consortia interactions reprogram the gene expression profile and colitogenic activity of the opportunistic pathogen E. faecalis toward a protective function.


Assuntos
Colite/imunologia , Colite/microbiologia , Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Consórcios Microbianos/imunologia , Animais , Colite/genética , Modelos Animais de Doenças , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/genética , Camundongos , Camundongos Knockout , Consórcios Microbianos/genética
16.
J Clin Invest ; 129(9): 3702-3716, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211700

RESUMO

Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.


Assuntos
Linfócitos B Reguladores/microbiologia , Microbioma Gastrointestinal , Interleucina-10/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linfócitos B Reguladores/imunologia , Colite/microbiologia , Citocinas/metabolismo , Regulação para Baixo , Transplante de Microbiota Fecal , Vida Livre de Germes , Proteínas de Fluorescência Verde/metabolismo , Imunidade Inata , Inflamação , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Toll-Like 9/metabolismo
17.
Cancer Discov ; 8(4): 403-416, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567829

RESUMO

We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.


Assuntos
Carcinogênese , Microbiota , Monócitos/fisiologia , Neoplasias Pancreáticas/microbiologia , Receptores Toll-Like/metabolismo , Animais , Bactérias , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 113(47): E7554-E7563, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821775

RESUMO

Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Microbioma Gastrointestinal , Fator de Crescimento Insulin-Like I/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos Graxos Voláteis/metabolismo , Feminino , Fígado/metabolismo , Masculino , Camundongos , Osteogênese , Organismos Livres de Patógenos Específicos
19.
Clin Transl Gastroenterol ; 7(8): e187, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27560928

RESUMO

OBJECTIVES: Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin. METHODS: Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16-30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1ß, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1ß, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation). RESULTS: All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice. CONCLUSIONS: Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.

20.
Hepatology ; 64(4): 1232-48, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27339732

RESUMO

UNLABELLED: The mechanisms behind the development of hepatic encephalopathy (HE) are unclear, although hyperammonemia and systemic inflammation through gut dysbiosis have been proposed. The aim of this work was to define the individual contribution of hyperammonemia and systemic inflammation on neuroinflammation in cirrhosis using germ-free (GF) and conventional mice. GF and conventional C57BL/6 mice were made cirrhotic using CCl4 gavage. These were compared to their noncirrhotic counterparts. Intestinal microbiota, systemic and neuroinflammation (including microglial and glial activation), serum ammonia, intestinal glutaminase activity, and cecal glutamine content were compared between groups. GF cirrhotic mice developed similar cirrhotic changes to conventional mice after 4 extra weeks (16 vs. 12 weeks) of CCl4 gavage. GF cirrhotic mice exhibited higher ammonia, compared to GF controls, but this was not associated with systemic or neuroinflammation. Ammonia was generated through increased small intestinal glutaminase activity with concomitantly reduced intestinal glutamine levels. However, conventional cirrhotic mice had intestinal dysbiosis as well as systemic inflammation, associated with increased serum ammonia, compared to conventional controls. This was associated with neuroinflammation and glial/microglial activation. Correlation network analysis in conventional mice showed significant linkages between systemic/neuroinflammation, intestinal microbiota, and ammonia. Specifically beneficial, autochthonous taxa were negatively linked with brain and systemic inflammation, ammonia, and with Staphylococcaceae, Lactobacillaceae, and Streptococcaceae. Enterobacteriaceae were positively linked with serum inflammatory cytokines. CONCLUSION: Gut microbiota changes drive development of neuroinflammatory and systemic inflammatory responses in cirrhotic animals. (Hepatology 2016;64:1232-1248).


Assuntos
Microbioma Gastrointestinal/fisiologia , Cirrose Hepática/etiologia , Animais , Hiperamonemia/etiologia , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA