Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Elife ; 122023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661306

RESUMO

Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush-border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knockout of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.


Assuntos
Dipeptidil Peptidase 4 , Células Epiteliais , Humanos , Dipeptidil Peptidase 4/metabolismo , Células Epiteliais/metabolismo , Intestinos , Microvilosidades/metabolismo , Transporte Proteico , Polaridade Celular , Proteínas de Membrana/metabolismo
2.
ACS Omega ; 7(48): 43820-43828, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506136

RESUMO

Active networks of biopolymers and motor proteins in vitro self-organize and exhibit dynamic structures on length scales much larger than the interacting individual components of which they consist. How the dynamics is related across the range of length scales is still an open question. Here, we experimentally characterize and quantify the dynamic behavior of isolated microtubule bundles that bend due to the activity of motor proteins. At the motor level, we track and describe the motion features of kinesin-1 clusters stepping within the bending bundles. We find that there is a separation of length scales by at least 1 order of magnitude. At a run length of <1 µm, kinesin-1 activity leads to a bundle curvature in the range of tens of micrometers. We propose that the distribution of microtubule polarity plays a crucial role in the bending dynamics that we observe at both the bundle and motor levels. Our results contribute to the understanding of fundamental principles of vital intracellular processes by disentangling the multiscale dynamics in out-of-equilibrium active networks composed of cytoskeletal elements.

3.
Front Immunol ; 13: 967914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110849

RESUMO

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Assuntos
MicroRNAs , Receptores de Interleucina-7 , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina-7/genética
4.
Mol Oncol ; 16(15): 2771-2787, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673965

RESUMO

Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Proteínas Quinases Associadas a Fase S , Proteína Supressora de Tumor p53 , Morte Celular , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459737

RESUMO

MiRNAs are small noncoding RNAs that promote the sequence-specific repression of their respective target genes, thereby regulating diverse physiological as well as pathological processes. Here, we identify a novel role of the miR-26 family in early B cell development. We show that enhanced expression of miR-26 family members potently blocks the pre-B to immature B cell transition, promotes pre-B cell expansion and eventually enables growth factor independency. Mechanistically, this is at least partially mediated by direct repression of the tumor-suppressor Pten, which consequently enhances PI3K-AKT signaling. Conversely, limiting miR-26 activity in a more physiological loss-of-function approach counteracts proliferation and enhances pre-B cell differentiation in vitro as well as in vivo. We therefore postulate a rheostat-like role for the miR-26 family in progenitor B cells, with an increase in mature miR-26 levels signaling cell expansion, and facilitating pre-B to the immature B cell progression when reduced.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
6.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7877-7887, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34170833

RESUMO

Trajectory or path planning is a fundamental issue in a wide variety of applications. In this article, we show that it is possible to solve path planning on a maze for multiple start point and endpoint highly efficiently with a novel configuration of multilayer networks that use only weighted pooling operations, for which no network training is needed. These networks create solutions, which are identical to those from classical algorithms such as breadth-first search (BFS), Dijkstra's algorithm, or TD(0). Different from competing approaches, very large mazes containing almost one billion nodes with dense obstacle configuration and several thousand importance-weighted path endpoints can this way be solved quickly in a single pass on parallel hardware.

7.
PLoS Pathog ; 17(10): e1009996, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648606

RESUMO

Members of the Old World Arenaviruses primarily utilize α-dystroglycan (α-DAG1) as a cellular receptor for infection. Mutations within the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) reduce or abrogate the binding affinity to α-DAG1 and thus influence viral persistence, kinetics, and cell tropism. The observation that α-DAG1 deficient cells are still highly susceptible to low affinity variants, suggests the use of an alternative receptor(s). In this study, we used a genome-wide CRISPR Cas9 knockout screen in DAG1 deficient 293T cells to identify host factors involved in α-DAG1-independent LCMV infection. By challenging cells with vesicular stomatitis virus (VSV), pseudotyped with the GP of LCMV WE HPI (VSV-GP), we identified the heparan sulfate (HS) biosynthesis pathway as an important host factor for low affinity LCMV infection. These results were confirmed by a genetic approach targeting EXTL3, a key factor in the HS biosynthesis pathway, as well as by enzymatic and chemical methods. Interestingly, a single point mutation within GP1 (S153F or Y155H) of WE HPI is sufficient for the switch from DAG1 to HS binding. Furthermore, we established a simple and reliable virus-binding assay, using directly labelled VSV-GP by intramolecular fusion of VSV-P and mWasabi, demonstrating the importance of HS for virus attachment but not entry in Burkitt lymphoma cells after reconstitution of HS expression. Collectively, our study highlights the essential role of HS for low affinity LCMV infection in contrast to their high affinity counterparts. Residual LCMV infection in double knockouts indicate the use of (a) still unknown entry receptor(s).


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/transmissão , Vírus da Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/patogenicidade , Células HEK293 , Humanos , Receptores Virais/metabolismo
8.
FEBS J ; 288(5): 1533-1545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32705746

RESUMO

MicroRNAs (miRNAs) post-transcriptionally repress almost all genes in mammals and thereby form an additional layer of gene regulation. As such, miRNAs impact on nearly every physiological process and have also been associated with cancer. Prominent examples of such miRNAs can be found in the miR-15 family, composed of the bicistronic clusters miR-15a/16-1, miR-15b/16-2, and miR-497/195. In particular, the miR-15a/16-1 cluster is deleted in almost two thirds of all chronic B lymphocytic leukemia (CLL) cases, a phenotype that is also recapitulated by miR-15a/16-1-deficient as well as miR-15b/16-2-deficient mice. Under physiological conditions, those two clusters have been implicated in T-cell function, and B-cell and natural killer (NK) cell development; however, it is unclear whether miR-497 and miR-195 confer similar roles in health and disease. Here, we have generated a conditional mouse model for tissue-specific deletion of miR-497 and miR-195. While mice lacking miR-15a/16-1 in the hematopoietic compartment developed clear signs of CLL over time, aging mice deficient for miR-497/195 did not show such a phenotype. Likewise, loss of miR-15a/16-1 impaired NK and early B-cell development, whereas miR-497/195 was dispensable for these processes. In fact, a detailed analysis of miR-497/195-deficient mice did not reveal any effect on steady-state hematopoiesis or immune cell function. Unexpectedly, even whole-body deletion of the cluster was well-tolerated and had no obvious impact on embryonic development or healthy life span. Therefore, we postulate that the miR-497/195 cluster is redundant to its paralog clusters or that its functional relevance is restricted to certain physiological and pathological conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Animais , Animais Geneticamente Modificados , Linfócitos B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Homeostase/genética , Homeostase/imunologia , Humanos , Imunofenotipagem , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , MicroRNAs/imunologia , Células-Tronco Embrionárias Murinas/imunologia , Células-Tronco Embrionárias Murinas/patologia , Deleção de Sequência , Transdução de Sinais , Análise de Célula Única/métodos , Baço/imunologia , Baço/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
9.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502422

RESUMO

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genética
10.
Front Neurorobot ; 14: 600984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584239

RESUMO

Path planning plays a crucial role in many applications in robotics for example for planning an arm movement or for navigation. Most of the existing approaches to solve this problem are iterative, where a path is generated by prediction of the next state from the current state. Moreover, in case of multi-agent systems, paths are usually planned for each agent separately (decentralized approach). In case of centralized approaches, paths are computed for each agent simultaneously by solving a complex optimization problem, which does not scale well when the number of agents increases. In contrast to this, we propose a novel method, using a homogeneous, convolutional neural network, which allows generation of complete paths, even for more than one agent, in one-shot, i.e., with a single prediction step. First we consider single path planning in 2D and 3D mazes. Here, we show that our method is able to successfully generate optimal or close to optimal (in most of the cases <10% longer) paths in more than 99.5% of the cases. Next we analyze multi-paths either from a single source to multiple end-points or vice versa. Although the model has never been trained on multiple paths, it is also able to generate optimal or near-optimal (<22% longer) paths in 96.4 and 83.9% of the cases when generating two and three paths, respectively. Performance is then also compared to several state of the art algorithms.

11.
Neural Netw ; 123: 153-162, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874331

RESUMO

Neural networks in the brain are dominated by sometimes more than 60% feedback connections, which most often have small synaptic weights. Different from this, little is known how to introduce feedback into artificial neural networks. Here we use transfer entropy in the feed-forward paths of deep networks to identify feedback candidates between the convolutional layers and determine their final synaptic weights using genetic programming. This adds about 70% more connections to these layers all with very small weights. Nonetheless performance improves substantially on different standard benchmark tasks and in different networks. To verify that this effect is generic we use 36000 configurations of small (2-10 hidden layer) conventional neural networks in a non-linear classification task and select the best performing feed-forward nets. Then we show that feedback reduces total entropy in these networks always leading to performance increase. This method may, thus, supplement standard techniques (e.g. error backprop) adding a new quality to network learning.


Assuntos
Aprendizado Profundo/normas , Retroalimentação , Guias de Prática Clínica como Assunto
12.
Ecol Evol ; 9(23): 13332-13343, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871648

RESUMO

Sex determination in zebrafish by manual approaches according to current guidelines relies on human observation. These guidelines for sex recognition have proven to be subjective and highly labor-intensive. To address this problem, we present a methodology to automatically classify the phenotypic sex using two machine learning methods: Deep Convolutional Neural Networks (DCNNs) based on the whole fish appearance and Support Vector Machine (SVM) based on caudal fin coloration. Machine learning techniques in sex classification provide potential efficiency with the advantage of automatization and robustness in the prediction process. Furthermore, since developmental plasticity can be influenced by environmental conditions, we have investigated the impact of elevated water temperature during embryogenesis on sex and sex-related differences in color intensity of adult zebrafish. The estimated color intensity based on SVM was then applied to detect the association between coloration and body weight and length. Phenotypic sex classifications using machine learning methods resulted in a high degree of association with the real sex in nontreated animals. In temperature-induced animals, DCNNs reached a performance of 100%, whereas 20% of males were misclassified using SVM due to a lower color intensity. Furthermore, a positive association between color intensity and body weight and length was observed in males. Our study demonstrates that high ambient temperature leads to a lower color intensity in male animals and a positive association of male caudal fin coloration with body weight and length, which appears to play a significant role in sexual attraction. The software developed for sex classification in this study is readily applicable to other species with sex-linked visible phenotypic differences.

13.
PLoS One ; 14(8): e0221401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461472

RESUMO

Chaotic spiral or scroll wave dynamics can be found in diverse systems. In cardiac dynamics, spiral or scroll waves of electrical excitation determine the dynamics during life-threatening arrhythmias like ventricular fibrillation. In numerical studies it was found that chaotic episodes of spiral and scroll waves can be transient, thus they terminate spontaneously. We show in this study that this behavior can also be observed using models which describe the ion channel dynamics of human cardiomyocytes (Bueno-Orovio-Cherry-Fenton model and the Ten Tusscher-Noble-Noble-Panfilov model). For both models we find that the average lifetime of the chaotic transients grows exponentially with the system size. With this behavior, we classify the systems into the group of type-II supertransients. We observe a significant difference of the breakup behavior between the models, which results in a distinct dynamics during the final phase just before the termination. The observation of a (temporally) stable single-spiral state affects the prevailing description of the dynamics of type-II supertransients as being "quasi-stationary" and also the feasibility of predicting the spontaneous termination of the spiral wave dynamics. In the long term, the relation between the breakup behavior of spiral waves and properties of chaotic transients like predictability or average transient lifetime may contribute to an improved understanding and classification of cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletromagnéticos , Canais Iônicos/química , Modelos Cardiovasculares , Potenciais de Ação/fisiologia , Simulação por Computador , Ventrículos do Coração/química , Humanos , Canais Iônicos/fisiologia , Cadeias de Markov , Miócitos Cardíacos/química , Miócitos Cardíacos/fisiologia , Função Ventricular
14.
BMC Genomics ; 20(1): 341, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060508

RESUMO

BACKGROUND: Elevated water temperature, as is expected through climate change, leads to masculinization in fish species with sexual plasticity, resulting in changes in population dynamics. These changes are one important ecological consequence, contributing to the risk of extinction in small and inbred fish populations under natural conditions, due to male-biased sex ratio. Here we investigated the effect of elevated water temperature during embryogenesis on sex ratio and sex-biased gene expression profiles between two different tissues, namely gonad and caudal fin of adult zebrafish males and females, to gain new insights into the molecular mechanisms underlying sex determination (SD) and colour patterning related to sexual attractiveness. RESULTS: Our study demonstrated sex ratio imbalances with 25.5% more males under high-temperature condition, resulting from gonadal masculinization. The result of transcriptome analysis showed a significantly upregulated expression of male SD genes (e.g. dmrt1, amh, cyp11c1 and sept8b) and downregulation of female SD genes (e.g. zp2.1, vtg1, cyp19a1a and bmp15) in male gonads compared to female gonads. Contrary to expectations, we found highly differential expression of colour pattern (CP) genes in the gonads, suggesting the 'neofunctionalisation' of those genes in the zebrafish reproduction system. However, in the caudal fin, no differential expression of CP genes was identified, suggesting the observed differences in colouration between males and females in adult fish may be due to post-transcriptional regulation of key enzymes involved in pigment synthesis and distribution. CONCLUSIONS: Our study demonstrates male-biased sex ratio under high temperature condition and support a polygenic SD (PSD) system in laboratory zebrafish. We identify a subset of pathways (tight junction, gap junction and apoptosis), enriched for SD and CP genes, which appear to be co-regulated in the same pathway, providing evidence for involvement of those genes in the regulation of phenotypic sexual dimorphism in zebrafish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Diferenciação Sexual , Razão de Masculinidade , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Cor , Feminino , Temperatura Alta , Masculino , Maturidade Sexual , Transcriptoma , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
15.
FEBS J ; 286(18): 3566-3581, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120187

RESUMO

Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity-enhancing mutations into their B-cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation-induced cytidine deaminase (AID). Upon germinal centre exit, B cells differentiate into antibody-secreting plasma cells. Germinal centre maintenance and terminal fate choice require transcriptional reprogramming that associates with a substantial reconfiguration of DNA methylation patterns. Here we examine the role of ten-eleven-translocation (TET) proteins, enzymes that facilitate DNA demethylation and promote a permissive chromatin state by oxidizing 5-methylcytosine, in antibody-mediated immunity. Using a conditional gene ablation strategy, we show that TET2 and TET3 guide the transition of germinal centre B cells to antibody-secreting plasma cells. Optimal AID expression requires TET function, and TET2 and TET3 double-deficient germinal centre B cells show defects in CSR. However, TET2/TET3 double-deficiency does not prevent the generation and selection of high-affinity germinal centre B cells. Rather, combined TET2 and TET3 loss-of-function in germinal centre B cells favours C-to-T and G-to-A transition mutagenesis, a finding that may be of significance for understanding the aetiology of B-cell lymphomas evolving in conditions of reduced TET function.


Assuntos
Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Desmetilação do DNA , Metilação de DNA/genética , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas Proto-Oncogênicas/imunologia
16.
Bio Protoc ; 8(8): e2820, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286030

RESUMO

This protocol describes the generation and functional validation of microRNA (miRNA) sponge or decoy constructs. When expressed from a strong promoter, these transcripts can sequester specific miRNA:RISC complexes, thereby resulting in a derepression of endogenous target mRNA. Hence, cells expressing such sponges display a partial or full miRNA loss-of-function phenotype. Depending on the sponge sequence, the activity of any miRNA of choice can be inhibited by sponge sequestration, but it should be noted that these constructs do not seem to be specific for one particular miRNA. Rather, all miRNAs of the same family as defined by the seed sequence will be affected, albeit to a different degree.

17.
FEBS J ; 285(2): 325-338, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29151265

RESUMO

Calponin 3 (Cnn3) is a member of the Cnn family of actin-binding molecules that is highly expressed in the mammalian brain and has been shown to control dendritic spine morphology, density, and plasticity by regulating actin cytoskeletal reorganization and dynamics. However, little is known about the role of Cnn3 during embryonic development. In this study, we analyzed mutant animals deficient in Cnn3 to gain a better understanding of its role in brain morphogenesis. Embryos lacking Cnn3 exhibited massive malformation of the developing brain including exoencephaly, closure defects at the rostral neural tube, and strong enlargement of brain tissue. In wild-type animals, we found Cnn3 being localized to the apical lining of the neuroepithelium in close vicinity to beta-Catenin and N-cadherin. By performing immunohistochemistry on beta-Catenin and p-Smad, and furthermore taking advantage of Wnt-reporter animals, we provide evidence that the loss of Cnn3 during development can affect signaling pathways crucial for correct morphogenesis of the neural tube. In addition, we used embryonic neurosphere cultures to investigate the role of Cnn3 in embryonic neuronal stem cells (NSC). Here, we observed that Cnn3 deficiency in NSCs increased the number of newly formed neurospheres and increased neurosphere size without perturbing their differentiation potential. Together, our study provides evidence for an important role of Cnn3 during development of the embryonic brain and in regulating NSC function.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas dos Microfilamentos/fisiologia , Morfogênese/fisiologia , Células-Tronco Neurais/citologia , Tubo Neural/embriologia , Tubo Neural/crescimento & desenvolvimento , Animais , Proteínas de Ligação ao Cálcio/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Calponinas
18.
J Autoimmun ; 89: 41-52, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183643

RESUMO

In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory.


Assuntos
Antagomirs/genética , Colite/imunologia , Colo/imunologia , Inflamação/imunologia , MicroRNAs/genética , Células Th1/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
19.
Nat Commun ; 8(1): 1697, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167438

RESUMO

Checkpoint kinase 1 (CHK1) is critical for intrinsic cell cycle control and coordination of cell cycle progression in response to DNA damage. Despite its essential function, CHK1 has been identified as a target to kill cancer cells and studies using Chk1 haploinsufficient mice initially suggested a role as tumor suppressor. Here, we report on the key role of CHK1 in normal B-cell development, lymphomagenesis and cell survival. Chemical CHK1 inhibition induces BCL2-regulated apoptosis in primary as well as malignant B-cells and CHK1 expression levels control the timing of lymphomagenesis in mice. Moreover, total ablation of Chk1 in B-cells arrests their development at the pro-B cell stage, a block that, surprisingly, cannot be overcome by inhibition of mitochondrial apoptosis, as cell cycle arrest is initiated as an alternative fate to limit the spread of damaged DNA. Our findings define CHK1 as essential in B-cell development and potent target to treat blood cancer.


Assuntos
Linfócitos B/enzimologia , Quinase 1 do Ponto de Checagem/fisiologia , Linfoma/enzimologia , Animais , Apoptose , Linfócitos B/citologia , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/enzimologia , Linfoma de Burkitt/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/deficiência , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Genes myc , Haploinsuficiência , Humanos , Linfoma/etiologia , Linfoma/genética , Linfopoese/genética , Linfopoese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
20.
EMBO Rep ; 18(9): 1604-1617, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705801

RESUMO

Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , MicroRNAs/imunologia , MicroRNAs/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Animais , Linfócitos B/imunologia , Ciclina D3/genética , Ciclina E/genética , Ativação Linfocitária , Linfopoese , Camundongos , MicroRNAs/genética , Proteínas Oncogênicas/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Interleucina-7/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA