Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Endocrine ; 84(2): 345-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400880

RESUMO

PURPOSE: Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS: Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS: By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS: SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.


Assuntos
Disgenesia Gonadal , Hipopituitarismo , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Disgenesia Gonadal/genética , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Camundongos Knockout , Linhagem , Hormônios Hipofisários/deficiência , Hormônios Hipofisários/genética , Proteínas de Transporte Vesicular/genética
2.
New Phytol ; 241(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565540

RESUMO

Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/metabolismo , Plântula , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA