Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(7): 1787-1795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822826

RESUMO

The vigilance decrement, a temporal decline in detection performance, has been observed across multiple sensory modalities. Spatial uncertainty about the location of task-relevant stimuli has been demonstrated to increase the demands of vigilance and increase the severity of the vigilance decrement when attending to visual displays. The current study investigated whether spatial uncertainty also increases the severity of the vigilance decrement and task demands when an auditory display is used. Individuals monitored an auditory display to detect critical signals that were shorter in duration than non-target stimuli. These auditory stimuli were presented in either a consistent, predictable pattern that alternated sound presentation from left to right (spatial certainty) or an inconsistent, unpredictable pattern that randomly presented sounds from the left or right (spatial uncertainty). Cerebral blood flow velocity (CBFV) was measured to assess the neurophysiological demands of the task. A decline in performance and CBFV was observed in both the spatially certain and spatially uncertain conditions, suggesting that spatial auditory vigilance tasks are demanding and can result in a vigilance decrement. Spatial uncertainty resulted in a more severe vigilance decrement in correct detections compared to spatial certainty. Reduced right-hemispheric CBFV was also observed during spatial uncertainty compared to spatial certainty. Together, these results suggest that auditory spatial uncertainty hindered performance and required greater attentional demands compared to spatial certainty. These results concur with previous research showing the negative impact of spatial uncertainty in visual vigilance tasks, but the current results contrast recent research showing no effect of spatial uncertainty on tactile vigilance.


Assuntos
Percepção Auditiva , Circulação Cerebrovascular , Percepção Espacial , Humanos , Masculino , Feminino , Adulto Jovem , Incerteza , Adulto , Percepção Auditiva/fisiologia , Circulação Cerebrovascular/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica/métodos , Hemodinâmica/fisiologia , Atenção/fisiologia , Nível de Alerta/fisiologia , Desempenho Psicomotor/fisiologia
2.
Hum Factors ; : 187208221139744, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455164

RESUMO

OBJECTIVE: The present study was designed to evaluate human performance and workload associated with an auditory vigilance task that required spatial discrimination of auditory stimuli. BACKGROUND: Spatial auditory displays have been increasingly developed and implemented into settings that require vigilance toward auditory spatial discrimination and localization (e.g., collision avoidance warnings). Research has yet to determine whether a vigilance decrement could impede performance in such applications. METHOD: Participants completed a 40-minute auditory vigilance task in either a spatial discrimination condition or a temporal discrimination condition. In the spatial discrimination condition, participants differentiated sounds based on differences in spatial location. In the temporal discrimination condition, participants differentiated sounds based on differences in stimulus duration. RESULTS: Correct detections and false alarms declined during the vigilance task, and each did so at a similar rate in both conditions. The overall level of correct detections did not differ significantly between conditions, but false alarms occurred more frequently within the spatial discrimination condition than in the temporal discrimination condition. NASA-TLX ratings and pupil diameter measurements indicated no differences in workload. CONCLUSION: Results indicated that tasks requiring auditory spatial discrimination can induce a vigilance decrement; and they may result in inferior vigilance performance, compared to tasks requiring discrimination of auditory duration. APPLICATION: Vigilance decrements may impede performance and safety in settings that depend on sustained attention to spatial auditory displays. Display designers should also be aware that auditory displays that require users to discriminate differences in spatial location may result in poorer discrimination performance than non-spatial displays.

3.
Appl Ergon ; 101: 103677, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35077864

RESUMO

Development of adaptive aids to support human performance in complex systems is a cornerstone of human factors. Research in this area has led to a diversity of ideas regarding potential activation methods. However, little guidance has been provided on how to select among aid activation methods, and this lack of guidance could hinder adaptive aid development and deployment. Within the current paper, we review available methods of aid activation and describe a process for developing and validating adaptive aiding systems. We focus on supporting system designers who wish to select the ideal aid activation method for an intended application. The process that we recommend is an empirical approach to evaluate the feasibility, costs, and benefits of various potential methods of aid activation. This methodological framework will support practitioners making critical decisions about the design of aiding systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA