Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 80(7): 177, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285022

RESUMO

Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/genética , Exossomos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Corpos Multivesiculares/metabolismo , Autofagia
2.
Cell Mol Life Sci ; 75(2): 193-208, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733901

RESUMO

Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.


Assuntos
Membrana Celular/metabolismo , Exossomos/metabolismo , Fusão de Membrana , Corpos Multivesiculares/metabolismo , Animais , Autofagia , Transporte Biológico , Exocitose , Humanos , Lisossomos/metabolismo
3.
Cell Mol Life Sci ; 73(24): 4717-4737, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27438886

RESUMO

Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.


Assuntos
Autofagia , Exossomos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Via Secretória , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Técnicas de Silenciamento de Genes , Humanos , Hidrazonas , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morfolinas/farmacologia , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteômica , Pirimidinas , Proteínas de Ligação a RNA/metabolismo , Via Secretória/efeitos dos fármacos , Tetraspanina 30/metabolismo , Triazinas/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
J Biol Chem ; 290(7): 4225-37, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25519911

RESUMO

Exosomes are vesicles released by cells after fusion of multivesicular bodies with the plasma membrane. In this study, we have investigated whether ether lipids affect the release of exosomes in PC-3 cells. To increase the cellular levels of ether lipids, the ether lipid precursor hexadecylglycerol was added to cells. Lipidomic analysis showed that this compound was in fact able to double the cellular levels of ether lipids in these cells. Furthermore, increased levels of ether lipids were also found in exosomes released by cells containing high levels of these lipids. Interestingly, as measured by nanoparticle tracking analysis, cells containing high levels of ether lipids released more exosomes than control cells, and these exosomes were similar in size to control exosomes. Moreover, silver staining and Western blot analyses showed that the protein composition of exosomes released in the presence of hexadecylglycerol was changed; the levels of some proteins were increased, and the levels of others were reduced. In conclusion, this study clearly shows that an increase in cellular ether lipids is associated with changes in the release and composition of exosomes.


Assuntos
Exossomos/química , Exossomos/metabolismo , Éteres de Glicerila/farmacologia , Lipídeos/análise , Corpos Multivesiculares/metabolismo , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
5.
Front Genet ; 4: 36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519132

RESUMO

miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles, or apoptotic bodies) or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, non-invasive diagnostic, and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen) has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.

6.
Biochim Biophys Acta ; 1819(11-12): 1154-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22982408

RESUMO

Exosomes are small extracellular vesicles released to the extracellular milieu through fusion of multivesicular bodies with the plasma membrane. These vesicles contain microRNAs and might therefore be vehicles transferring genetic information between cells. The aim of this study was to investigate whether there was a sorting of microRNAs into exosomes in the prostate cancer cell line PC-3. In addition, microRNAs in PC-3 cells and in the non-cancerous prostate cell line RWPE-1 were compared. Exosomes were isolated from the conditioned media from PC-3 cells by ultracentrifugation and inspected by electron microscopy. Total RNA was isolated and microRNAs were analyzed by microarray analysis and real time RT-PCR. MicroRNA microarray analysis revealed that the microRNA profile of PC-3 released exosomes was similar to the profile of the corresponding parent cells. Nevertheless, a sorting of certain microRNAs into exosomes was observed, and low number microRNAs (microRNAs with a low number in their name) were found to be underrepresented in these vesicles. Moreover, the miRNA profile of PC-3 cells resembled the miRNA profile of RWPE-1 cells, though some miRNAs were found to be differently expressed in these cell lines. These results show that exosomes from PC-3 cells, in agreement with previous reports from other cell types, contain microRNAs. Furthermore, this study supports the idea that there is a sorting of microRNAs into exosomes and adds a new perspective by pointing at the underrepresentation of low number miRNAs in PC-3 released exosomes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Neoplasias da Próstata/metabolismo , RNA Neoplásico/biossíntese , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Neoplásico/genética
7.
J Steroid Biochem Mol Biol ; 128(3-5): 154-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22051079

RESUMO

The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.


Assuntos
Anticolesterolemiantes/farmacologia , Glucose/metabolismo , Hidroxicolesteróis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores Nucleares Órfãos/antagonistas & inibidores , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Anticolesterolemiantes/química , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidroxicolesteróis/química , Receptores X do Fígado , Modelos Moleculares , Conformação Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA