Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730928

RESUMO

The aim of this paper was to evaluate the fracture resistance of 3D-printed zirconia occlusal veneers (OVs) of different thicknesses and supported by different abutment materials. Materials and Methods: The standard OV of a natural molar was prepared and digitized using a laboratory 3D scanner. The resulting digital tooth abutment was milled either using cobalt-chromium (CoCr) or a fiber-reinforced composite (FRC). All the abutments were digitized and standardized OVs (30° tilt of all the cusps) designed with 0.4 mm, 0.6 mm, or 0.8 mm wall thicknesses. The OVs were fabricated using either the Programill PM7 milling device (Ivoclar Vivadent, PM) or one of two 3D zirconia printers, Cerafab 7500 (Lithoz, LC) or Zipro-D (AON, ZD). The ZD samples were only tested on CoCr abutments. The completed OVs were luted to their abutments and subjected to artificial aging, consisting of thermocycling and chewing simulation before fracture testing with a steel sphere (d = 8 mm) as an antagonist with three contact points on the occlusal OV surface. Besides the total fracture resistance Fu,tot, the lowest contact force Fu,cont leading to the local fracture of a cusp was of interest. The possible effects of the factors fabrication approach, wall thickness, and abutment material were evaluated using ANOVA (α = 0.05; SPSS Ver.28). Results: The total fracture resistance/contact forces leading to failure ranged from Fu,tot = 416 ± 83 N/Fu,cont = 140 ± 22 N for the 0.4 mm OVs fabricated using LC placed on the FRC abutments to Fu,tot = 3309 ± 394 N (ZD)/Fu,cont = 1206 ± 184 N (PM) for the 0.8 mm thick OVs on the CoCr abutments. All the factors (the fabrication approach, abutment material, and OV wall thickness) had an independent effect on Fu,tot as well as Fu,cont (p < 0.032). In pairwise comparisons for Fu,tot of the OVs luted to the CoCr abutments, the ZD samples statistically outperformed the LC- and PM-fabricated teeth irrespective of the thickness (p < 0.001). Conclusions: Within the limitations of this study, the printed occlusal veneers exhibited comparable fracture resistances to those of the milled variants. However, more resilient abutments (FRC as a simulation of dentine) as well as a thinner wall thickness led to reduced OV fracture resistance, suggesting that 0.4 mm thick zirconia OVs should not be unreservedly used in every clinical situation.

2.
Bioengineering (Basel) ; 11(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38671815

RESUMO

The efficacy of retainers is a pivotal concern in orthodontic care. This study examined the biomechanical behaviour of retainers, particularly the influence of retainer stiffness and tooth resilience on force transmission and stress distribution. To do this, a finite element model was created of the lower jaw from the left to the right canine with a retainer attached on the oral side. Three levels of tooth resilience and variable retainer bending stiffness (influenced by retainer type, retainer diameter, and retainer material) were simulated. Applying axial or oblique (45° tilt) loads on a central incisor, the force transmission increased from 2% to 65% with increasing tooth resilience and retainer stiffness. Additionally, a smaller retainer diameter reduced the uniformity of the stress distribution in the bonding interfaces, causing concentrated stress peaks within a small field of the bonding area. An increase in retainer stiffness and in tooth resilience as well as a more oblique load direction all lead to higher overall stress in the adhesive bonding area associated with a higher risk of retainer bonding failure. Therefore, it might be recommended to avoid the use of retainers that are excessively stiff, especially in cases with high tooth resilience.

3.
Clin Oral Investig ; 28(2): 145, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351386

RESUMO

OBJECTIVES: To compare the strength and reliability of 3D-printed 3Y-TZP zirconia manufactured with various printing orientations and staining. MATERIALS AND METHODS: A total of one-hundred cylindrical zirconia specimens were designed and fabricated using 3D printing and processed according to ISO 6872 standards. Of these specimens, 80 were 3D printed using the new ZIPRO-D (ZD) 3D ceramic printer. In this ZD group, 60 specimens were printed in a vertical orientation and were either stained after debinding (ZD1, x-orientation, n = 20) or not stained (ZD2, x-orientation, n = 20; ZD3, y-orientation, n = 20) and the remaining 20 specimens out of n = 80 were printed in a horizontal orientation (ZD4). Further 20 specimens out of the entire sample N = 100 were printed vertically with the CeraFab7500 3D ceramic printer (LC). All completed specimens were loaded until fracture using a universal testing machine. Biaxial flexural strengths and Weibull parameters were computed for the ZD groups and for the LC group. Group and sub-group effects were evaluated using Welch ANOVA (alpha = 0.05). RESULTS: The mean (standard deviation, SD) biaxial flexural strengths of vertically oriented ZD samples with (ZD1) and without (ZD2/ZD3) staining were 811 (197) and 850 (152) MPa, respectively (p > 0.05). The ZD4 (horizontally printed), 1107 (144) MPa, and LC (1238 (327)) MPa samples had higher mean (SD) flexural strengths than the ZD1-3 specimens. No difference was observed between the ZD4 and LC group (p > 0.05). Weibull moduli were between m = 4.6 (ZD1) and 9.1 (ZD4) in the ZD group and m = 3.5 in the LC group. CONCLUSIONS: All tested 3D-printed zirconia specimens exceeded the flexural strengths required for class 5 restorations according to ISO 6872 standards. While the flexural strengths of zirconia printed using the novel ZD device in the vertical orientation are lower than those of zirconia printed using the LC printer, the ZD printer shows at least comparable reliability. CLINICAL RELEVANCE: 3D-printing of zirconia is a new technology in dental application. Based on the presented strengths values, clinical application of 3D-printed zirconia for fixed dental protheses can be recommended.


Assuntos
Cerâmica , Resistência à Flexão , Teste de Materiais , Reprodutibilidade dos Testes , Propriedades de Superfície , Zircônio , Impressão Tridimensional , Materiais Dentários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA