RESUMO
Background: The KDM1A histone demethylase regulates the cellular balance between proliferation and differentiation, and is often deregulated in human cancers including the childhood tumor neuroblastoma. We previously showed that KDM1A is strongly expressed in undifferentiated neuroblastomas and correlates with poor patient prognosis, suggesting a possible clinical benefit from targeting KDM1A. Methods: Here, we tested the efficacy of NCL-1, a small molecule specifically inhibiting KDM1A in preclinical models for neuroblastoma. Results: NCL-1 mimicked the effects of siRNA-mediated KDM1A knockdown and effectively inhibited KDM1A activity in four neuroblastoma cell lines and a patient-representative cell model. KDM1A inhibition shifted the aggressive tumor cell phenotypes towards less aggressive phenotypes. The proliferation and cell viability was reduced, accompanied by the induction of markers of neuronal differentiation. Interventional NCL-1 treatment of nude mice harboring established neuroblastoma xenograft tumors reduced tumor growth and inhibited cell proliferation. Reduced vessel density and defects in blood vessel construction also resulted, and NCL-1 inhibited the growth and tube formation of HUVEC-C cells in vitro. Conclusions: Inhibiting KDM1A could attack aggressive neuroblastomas two-fold, by re-directing tumor cells toward a less aggressive, slower-growing phenotype and by preventing or reducing the vascular support of large tumors.
RESUMO
Background: Capmatinib, a potent and selective MET tyrosine kinase inhibitor (TKI), holds promise as a therapeutic agent due to its potentially elevated intracranial efficacy in metastatic non-small cell lung cancer (NSCLC) patients harboring exon 14 skipping alterations in MET (MET Proto-Oncogene). This study aims to evaluate a targeted therapeutic approach to an MET exon 14 skipping (METex14) advanced NSCLC patient that progressed on Crizotinib and developed off target resistance alteration in PIK3CA. Case Discription: We present a case of advanced METex14 NSCLC patient wherein central nervous system (CNS) relapse occurred post complete surgical resection and remission of the lung tumor under first-line crizotinib treatment. Subsequent disease monitoring demonstrated a profound intracranial response to capmatinib in a crizotinib-resistant brain lesion. Molecular analysis unveiled the original METex14 D1028N driver mutation and a newly arisen PIK3CA bypass mutation, potentially contributing to off-target resistance. Conclusions: Before capmatinib was approved as a first line treatment option for metastatic NSCLC harboring somatic METex14 mutations, crizotinib conferred a potential option for targeted treatment. Switching to a selective MET-TKI like capmatinib with a better CNS penetration, it appears to be a promising approach for CNS metastasized NSCLC patients with METex14 mutations that failed on crizotinib. Further research is needed to more effectively understand and monitor resistance mechanisms using advanced diagnostic techniques such as DNA-based hybrid-capture (HC) next generation sequencing (NGS) to guide molecularly stratified therapy beyond the first line setting.
RESUMO
BACKGROUND: The PACIFIC study showed that after radio-chemotherapy, patients with NSCLC derived a benefit in PFS and OS when treated with durvalumab. This effect was limited to patients with a PD-L1 expression of >1%, partly because the outcome in the observational control arm was surprisingly favorable. Thus, it could be speculated that a lack of PD-L1 expression confers a favorable outcome for patients with stage III NSCLC. METHODS: Clinical data, PD-L1 expression, predictive blood markers, and the outcomes of 99 homogeneously treated patients with stage III NSCLC were retrospectively captured. Statistical analyses using the log rank test were performed. RESULTS: The median OS of patients with an expression of PD-L1 < 1% was 20 months (CI 10.5-29.5) and the median OS of patients with an expression of PD-L1 ≥ 1% was 28 months (CI 16.5-39.2) (p = 0.734). The median PFS of patients with an expression of PD-L1 < 1% was 9 months (CI 6.3-11.6) and the median PFS of patients with an expression of PD-L1 ≥ 1% was 12 months (CI 9.8-14.2) (p = 0.112). CONCLUSIONS: The assumption that the lack of PD-L1 expression represents a favorable prognostic factor after radio-chemotherapy vs. PD-L1 expression > 1% was not confirmed.
RESUMO
PURPOSE: Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promising clinical results in the treatment of ovarian cancer. Analysis of biomarker subgroups consistently revealed higher benefits for patients with homologous recombination deficiency (HRD). The test that is most often used for the detection of HRD in clinical studies is the Myriad myChoice assay. However, other assays can also be used to assess biomarkers, which are indicative of HRD, genomic instability (GI), and BRCA1/2 mutation status. Many of these assays have high potential to be broadly applied in clinical routine diagnostics in a time-effective decentralized manner. Here, we compare the performance of a multitude of alternative assays in comparison with Myriad myChoice in high-grade serous ovarian cancer (HGSOC). METHODS: DNA from HGSOC samples was extracted from formalin-fixed paraffin-embedded tissue blocks of cases previously run with the Myriad myChoice assay, and GI was measured by multiple molecular assays (CytoSNP, AmoyDx, Illumina TSO500 HRD, OncoScan, NOGGO GISv1, QIAseq HRD Panel and whole genome sequencing), applying different bioinformatics algorithms. RESULTS: Application of different assays to assess GI, including Myriad myChoice, revealed high concordance of the generated scores ranging from very substantial to nearly perfect fit, depending on the assay and bioinformatics pipelines applied. Interlaboratory comparison of assays also showed high concordance of GI scores. CONCLUSION: Assays for GI assessment not only show a high concordance with each other but also in correlation with Myriad myChoice. Thus, almost all of the assays included here can be used effectively to assess HRD-associated GI in the clinical setting. This is important as PARPi treatment on the basis of these tests is compliant with European Medicines Agency approvals, which are methodologically not test-bound.
Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Mutação , Proteína BRCA2/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Instabilidade Genômica/genética , Recombinação Homóloga/genéticaRESUMO
EGFR-mutant lung cancers develop a wide range of potential resistance alterations under therapy with the third-generation EGFR tyrosine kinase inhibitor osimertinib. MET amplification ranks among the most common acquired resistance alterations and is currently being investigated as a therapeutic target in several studies. Nevertheless, targeted therapy of MET might similarly result in acquired resistance by point mutations in MET, which further expands therapeutic and diagnostic challenges. Here, we report a 50-year-old male patient with EGFR-mutant lung adenocarcinoma and stepwise acquired resistance by a focal amplification of MET followed by D1246N (D1228N), D1246H (D1228H), and L1213V (L1195V) point mutations in MET, all detected by NGS. The patient successfully responded to the combined and sequential treatment of osimertinib, osimertinib/crizotinib, and third-line osimertinib/cabozantinib. This case highlights the importance of well-designed, sequential molecular diagnostic analyses and the personalized treatment of patients with acquired resistance.
Assuntos
Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genéticaRESUMO
The worldwide approval of the combination maintenance therapy of olaparib and bevacizumab in advanced high-grade serous ovarian cancer requires complex molecular diagnostic assays that are sufficiently robust for the routine detection of driver mutations in homologous recombination repair (HRR) genes and genomic instability (GI), employing formalin-fixed (FFPE) paraffin-embedded tumor samples without matched normal tissue. We therefore established a DNA-based hybrid capture NGS assay and an associated bioinformatic pipeline that fulfils our institution's specific needs. The assay´s target regions cover the full exonic territory of relevant cancer-related genes and HRR genes and more than 20,000 evenly distributed single nucleotide polymorphism (SNP) loci to allow for the detection of genome-wide allele specific copy number alterations (CNA). To determine GI status, we implemented an %CNA score that is robust across a broad range of tumor cell content (25-85%) often found in routine FFPE samples. The assay was established using high-grade serous ovarian cancer samples for which BRCA1 and BRCA2 mutation status as well as Myriad MyChoice homologous repair deficiency (HRD) status was known. The NOGGO (Northeastern German Society for Gynecologic Oncology) GIS (GI-Score) v1 assay was clinically validated on more than 400 samples of the ENGOT PAOLA-1 clinical trial as part of the European Network for Gynaecological Oncological Trial groups (ENGOT) HRD European Initiative. The "NOGGO GIS v1 assay" performed using highly robust hazard ratios for progression-free survival (PFS) and overall survival (OS), as well a significantly lower dropout rate than the Myriad MyChoice clinical trial assay supporting the clinical utility of the assay. We also provide proof of a modular and scalable routine diagnostic method, that can be flexibly adapted and adjusted to meet future clinical needs, emerging biomarkers, and further tumor entities.
RESUMO
Synaptopodin-2 (SYNPO2) is a protein associated with the Z-disc in striated muscle cells. It interacts with α-actinin and filamin C, playing a role in Z-disc maintenance under stress by chaperone-assisted selective autophagy (CASA). In smooth muscle cells, SYNPO2 is a component of dense bodies. Furthermore, it has been proposed to play a role in tumor cell proliferation and metastasis in many different kinds of cancers. Alternative transcription start sites and alternative splicing predict the expression of six putative SYNPO2 isoforms differing by extended amino- and/or carboxy-termini. Our analyses at mRNA and protein levels revealed differential expression of SYNPO2 isoforms in cardiac, skeletal and smooth muscle cells. We identified synemin, an intermediate filament protein, as a novel binding partner of the PDZ-domain in the amino-terminal extension of the isoforms mainly expressed in cardiac and smooth muscle cells, and demonstrated colocalization of SYNPO2 and synemin in both cell types. A carboxy-terminal extension, mainly expressed in smooth muscle cells, is sufficient for association with dense bodies and interacts with α-actinin. SYNPO2 therefore represents an additional and novel link between intermediate filaments and the Z-discs in cardiomyocytes and dense bodies in smooth muscle cells, respectively. In pathological skeletal muscle samples, we identified SYNPO2 in the central and intermediate zones of target fibers of patients with neurogenic muscular atrophy, and in nemaline bodies. Our findings help to understand distinct functions of individual SYNPO2 isoforms in different muscle tissues, but also in tumor pathology.
Assuntos
Actinina , Miócitos de Músculo Liso , Humanos , Miócitos Cardíacos , Isoformas de Proteínas , SarcômerosRESUMO
Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK)/receptor tyrosine kinase inhibitor (ROS1), demonstrated efficacy in ROS1 positive (ROS1+) non-small cell lung cancer (NSCLC), although approval is currently limited to the treatment of ALK+ patients. However, lorlatinib-induced resistance mechanisms, and its efficacy against the resistance mutation G2032R in ROS1, respectively, have not yet been fully understood. Furthermore, concomitant tumor suppressor gene p53 (TP53) mutations occur in driver alteration positive NSCLC, but their prognostic contribution in the context of ROS1 inhibition remains unclear. Here we report a ROS1+ NSCLC patient who developed an on target G2032R resistance mutation during second-line lorlatinib treatment, indicating the lack of activity of lorlatinib against ROS1 G2032R. The resistance mutation was detected in plasma-derived ctDNA, signifying the clinical utility of liquid biopsies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Biópsia Líquida , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Pirazóis , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/uso terapêuticoRESUMO
Interleukin-2 is central to the induction and maintenance of both natural (nTreg) and induced Foxp3-expressing regulatory T cells (iTreg). Thus, signals that modulate IL-2 availability may, in turn, also influence Treg homeostasis. Using global knockout and cell-specific knockout mouse models, we evaluated the role of the small GTPase ADP-ribosylation factor 4d (Arl4d) in regulatory T-cell biology. We show that the expression of Arl4d in T cells restricts both IL-2 production and responsiveness to IL-2, as measured by the phosphorylation of STAT5. Arl4d-deficient CD4 T cells converted more efficiently into Foxp3+ iTreg in vitro in the presence of αCD3ε and TGFß, which was associated with their enhanced IL-2 secretion. As such, Arl4d-/- CD4 T cells induced significantly less colonic inflammation and lymphocytic infiltration in a model of transfer colitis. Thus, our data reveal a negative regulatory role for Arl4d in CD4 T-cell biology, limiting iTreg conversion via the restriction of IL-2 production, leading to reduced induction of Treg from conventional CD4 T cells.
Assuntos
Interleucina-2 , Linfócitos T Reguladores , Fatores de Ribosilação do ADP/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: The negative prognostic and predictive value of TP53 co-mutations (TP53 mt+) in EGFR mutated (EGFR mt+) non-small cell lung cancer (NSCLC) is increasingly being acknowledged. Data consistently show that TP53 mt+ impact negatively on 1st line objective response rate (ORR), progression free survival (PFS) and overall survival (OS) with 1st and 2nd generation tyrosine kinase inhibitors (TKI). However, a negative predictive impact has not been shown for the 3rd generation TKI Osimertinib. Therefore, we investigated the impact of TP53 mt+ in EGFR mt+ NSCLC carrying a T790M resistance mutation and treated in 2nd/further lines with Osimertinib. METHODS: A total of 77 EGFR mt+ NSCLC IV patients carrying a T790M resistance mutation from two institutions were analyzed for TP53 mt+. Clinical data including sex, age, presence of CNS metastases, etc., as well as types of EGFR and TP53 mt+ were captured. PFS and OS were calculated from the start of Osimertinib. RESULTS: TP53 mt+ were found in 32/77 patients (42%). TP53 mt+ was a statistically significant independent negative predictive factor for PFS and OS. PFS for TP53 mt+ patients were 9 months vs. 14 months for patients with TP53 wild-type (TP53WT) (P<0.008). OS for TP53 mt+ patients was 16 months vs. 24 months patients with TP53WT (P<0.025). CONCLUSIONS: TP53 mt+ have a negative impact on PFS and OS in a group of patients carrying a sensitizing EGFR mt+ and a T790M resistance mutation treated with Osimertinib. These data, together with the data for 1st/2nd generation TKI in 1st line treatment call for additional therapeutic and management concepts for this subgroup of patients.
RESUMO
BACKGROUND: The present prospective study aimed at determining the impact of cell-free tumor DNA (ct-DNA), CA125 and HE4 from blood and ascites for quantification of tumor burden in patients with advanced high-grade serous epithelial ovarian cancer (EOC). METHODS: Genomic DNA was extracted from tumor FFPE and ct-DNA from plasma before surgery and on subsequent post-surgical days. Extracted DNA was subjected to hybrid-capture based next generation sequencing. Blood and ascites were sampled before surgery and on subsequent post-surgical days. 20 patients (10 undergoing complete resection (TR0), 10 undergoing incomplete resection (TR>0)) were included. RESULTS: The minor allele frequency (MAF) of TP53 mutations in ct-DNA of all patients with TR0 decreased significantly, compared to only one patient with TR>0. It was not possible to distinguish between patients with TR0 and patients with TR>0, using CA125 and HE4 from blood and ascites. CONCLUSIONS: Based upon the present findings, ct-DNA assessment in patients with high-grade serous EOC might help to better determine disease burden compared to standard tumor markers. Further studies should prospectively evaluate whether this enhancement of accuracy can help to optimize management of patients with EOC.
Assuntos
DNA Tumoral CirculanteRESUMO
Myeloid cells play an essential role in the maintenance of liver homeostasis, as well as the initiation and termination of innate and adaptive immune responses. In chronic hepatic inflammation, the production of transforming growth factor beta (TGF-ß) is pivotal for scarring and fibrosis induction and progression. TGF-ß signalling is tightly regulated via the Smad protein family. Smad7 acts as an inhibitor of the TGF-ß-signalling pathway, rendering cells that express high levels of it resistant to TGF-ß-dependent signal transduction. In hepatocytes, the absence of Smad7 promotes liver fibrosis. Here, we examine whether Smad7 expression in myeloid cells affects the extent of liver inflammation, injury and fibrosis induction during chronic liver inflammation. Using the well-established model of chronic carbon tetrachloride (CCl4)-mediated liver injury, we investigated the role of Smad7 in myeloid cells in LysM-Cre Smadfl/fl mice that harbour a myeloid-specific knock-down of Smad7. We found that the chronic application of CCl4 induces severe liver injury, with elevated serum alanine transaminase (ALT)/aspartate transaminase (AST) levels, centrilobular and periportal necrosis and immune-cell infiltration. However, the myeloid-specific knock-down of Smad7 did not influence these and other parameters in the CCl4-treated animals. In summary, our results suggest that, during long-term application of CCl4, Smad7 expression in myeloid cells and its potential effects on the TGF-ß-signalling pathway are dispensable for regulating the extent of chronic liver injury and inflammation.
Assuntos
Tetracloreto de Carbono/farmacologia , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Hepatopatias/metabolismo , Células Mieloides/metabolismo , Proteína Smad7/deficiência , Alanina Transaminase/metabolismo , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Transdução de Sinais/fisiologia , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
For many years, the risk-based therapy stratification of children with neuroblastoma has relied on clinical and molecular covariates. In recent years, genome analysis has revealed further alterations defining risk, tumor biology, and therapeutic targets. The implementation of a robust and scalable method for analyzing traditional and new molecular markers in routine diagnostics is an urgent clinical need. Here, we investigated targeted panel sequencing as a diagnostic approach to analyze all relevant genomic neuroblastoma risk markers in one assay. Our "neuroblastoma hybrid capture sequencing panel" (NB-HCSP) assay employs a technology for the high-coverage sequencing (>1000×) of 55 selected genes and neuroblastoma-relevant genomic regions, which allows for the detection of single nucleotide changes, structural rearrangements, and copy number alterations. We validated our assay by analyzing 15 neuroblastoma cell lines and a cohort of 20 neuroblastomas, for which reference routine diagnostic data and genome sequencing data were available. We observed a high concordance for risk markers identified by the NB-HSCP assay, clinical routine diagnostics, and genome sequencing. Subsequently, we demonstrated clinical applicability of the NB-HCSP assay by analyzing routine clinical samples. We conclude that the NB-HCSP assay may be implemented into routine diagnostics as a single assay that covers all essential covariates for initial neuroblastoma classification, extended risk stratification, and targeted therapy selection.
RESUMO
Since 2009, several first, second, and third generation EGFR tyrosine kinase inhibitors (TKI) have been approved for targeted treatment of EGFR mutated metastatic non-small lung cancer (NSCLC). A vast majority of patients is improving quickly on treatment; however, resistance is inevitable and typically occurs after one year for TKI of the first and second generation. Osimertinib, a third generation TKI, has recently been approved for first line treatment in the palliative setting and is expected to become approved for the adjuvant setting as well. Progression-free survival (PFS) under osimertinib is superior to its predecessors but its spectrum of resistance alterations appears significantly more diverse compared to first and second generation EGFR TKI. As resistance mechanisms to osimertinib are therapeutically targetable in some cases, it is important to comprehensively test for molecular alterations in the relapse scenario. Liquid biopsy may be advantageous over tissue analysis as it has the potential to represent tumor heterogeneity and clonal diversification. We have previously shown high concordance of hybrid capture (HC) based next generation sequencing (NGS) in liquid biopsy versus solid tumor biopsies. In this study, we now present real-word data from 56 patients with metastatic NSCLC that were tested by liquid biopsy at the time of disease progression on mostly second line treated osimertinib treatment. We present examples of single and multiple TKI resistance mechanisms, including mutations in multiple pathways, copy number changes and rare fusions of RET, ALK, FGFR3 and BRAF. In addition, we present the added value of HC based NGS to reveal polyclonal resistance development at the DNA level encoding multiple EGFR C797S and PIK3CA mutations.
RESUMO
Purpose: Abrogation of Notch signaling, which is pivotal for lung development and pulmonary epithelial cell fate decisions was shown to be involved in the aggressiveness and the differentiation of lung carcinomas. Additionally, the transcription factors YAP and TAZ which are involved in the Hippo pathway, were recently shown to be tightly linked with Notch signaling and to regulate the cell fate in epidermal stem cells. Thus, we aim to elucidate the effects of conditional Notch1 deficiency on carcinogenesis and TAZ expression in lung cancer. Methods: We investigated the effect of conditional Cre-recombinase mediated Notch1 knock-out on lung cancer cells in vivo using an autochthonous mouse model of lung adenocarcinomas driven by Kras LSL-G12V and comprehensive immunohistochemical analysis. In addition, we analyzed clinical samples and human lung cancer cell lines for TAZ expression and supported our findings by publicly available data from The Cancer Genome Atlas (TCGA). Results: In mice, we found induction of papillary adenocarcinomas and protrusions of tumor cells from the bronchiolar lining upon Notch1 deficiency. Moreover, the mutated Kras driven lung tumors with deleted Notch1 showed increased TAZ expression and focal nuclear translocation which was frequently observed in human pulmonary adenocarcinomas and squamous cell carcinomas of the lung, but not in small cell lung carcinomas. In addition, we used data from TCGA to show that putative inactivating NOTCH1 mutations co-occur with KRAS mutations and genomic amplifications in lung adenocarcinomas. Conclusion: Our in vivo study provides evidence that Notch1 deficiency in mutated Kras driven lung carcinomas contributes to lung carcinogenesis in a subgroup of patients by increasing TAZ expression who might benefit from TAZ signaling blockade.
Assuntos
Aciltransferases/metabolismo , Brônquios/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Notch1/fisiologia , Aciltransferases/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Brônquios/metabolismo , Carcinogênese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Células Tumorais CultivadasRESUMO
Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2-/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.
Assuntos
Macrófagos/microbiologia , Viabilidade Microbiana , NADPH Oxidase 2/genética , Índice de Gravidade de Doença , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Animais , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/análise , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidadeRESUMO
OBJECTIVE: BRAF mutations have been subtyped in three functional classes with different oncogenic modes of action. The clinical impact of BRAF mutational subtypes in non-small-cell lung cancer (NSCLC) remains to be defined. So far, ambiguous results were reported from analyses of heterogeneous patient cohorts. METHODS: We studied patients with metastatic or recurrent NSCLC who were sequentially enrolled in precision oncology programs at two large German lung cancer centres from 2009 to 2019. The study period allowed evaluating the specific impact of BRAF V600E-targeting. RESULTS: In a cohort of 72 patients, BRAF mutation subtyping revealed p.V600E mutations in 31 cases (43%), whereas 41 cases (57%) harboured 18 different BRAF mutational subtypes of functional classes II/III. Functionally relevant comutations were observed in 6.4% of class I, and 24.4% of class II/III BRAF mutations. Most patients were treated with chemotherapy. Targeted therapy was administered in 11 patients with a response rate of 72.7%. PD-1/PD-L1-immunotherapy was given in 14 patients with a response rate of 28.6%. Overall survival of patients with BRAF-mutated NSCLC was inferior (HR 1.38, p = 0.048) as compared to patients with BRAF wild-type cancers. Median time-to-treatment-failure with BRAF-targeting agents was shorter as compared to approved targeted therapy of other oncogenic drivers (HR 1.97, p = 0.05). Survival outcomes were not impacted by BRAF mutation subtype functional class. CONCLUSIONS: Patients with BRAF-mutated NSCLC have an inferior prognosis, which is not determined by BRAF mutation functional class. In contrast to NSCLC with other tractable driver mutations, BRAF-mutated NSCLC exhibit high susceptibility to immune checkpoint inhibitors.
Assuntos
Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Bases de Dados Factuais , Feminino , Alemanha , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Receptor de Morte Celular Programada 1/imunologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Inflammatory myofibroblastic tumours (IMT) are a rare cause of endobronchial masses in adults. Surgery has been the mainstay of treatment of endobronchial IMTs, based on the potential for recurrence. Interventional pulmonology has emerged as a minimally invasive and lung function preserving modality in management of airway obstruction due to tumours. We present a series of three adult patients with IMT treated endobronchially with a short discussion on its potential role. We also discuss how molecular analysis of IMTs for mutations in genes such as ALK and ROS1 might provide insights into clinical behaviour and potential targetable therapy in advanced, unresectable and metastatic cases.