Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Am J Cancer Res ; 14(7): 3348-3371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113871

RESUMO

Glypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines. GPC3-KO variants were established in HepG2 and Hep3B liver cancer cell lines using a lentivirus-mediated CRISPR/Cas9 system. We assessed the effects of GPC3 deficiency on oncogenic properties in vitro and in murine xenograft models. Downstream cellular signaling pathway changes induced by GPC3 deficiency were examined by RNAseq and western blot. To confirm the usefulness of the models for GPC3-targeted drug development, we evaluated the target engagement of a GPC3-selective antibody, GC33, conjugated to the positron-emitting zirconium-89 (89Zr) in subcutaneous murine xenografts of wild type (WT) and KO liver cancer cell lines. Deletion of GPC3 significantly reduced liver cancer cell proliferation, migration, and invasion compared to the parental cell lines. Additionally, the tumor growth of GPC3-KO liver cancer xenografts was significantly slower compared with control xenografts. RNA sequencing analysis also showed GPC3-KO resulted in a reduction in the expression of genes associated with cell cycle regulation, invasion, and migration. Specifically, we observed the downregulation of components in the AKT/NFκB/WNT signaling pathways and of molecules related to cell cycle regulation with GPC3-KO. In contrast, pMAPK/ERK1/2 was upregulated, suggesting an adaptive compensatory response. KO lines demonstrated increased sensitivity to ERK (GDC09994), while AKT (MK2206) inhibition was more effective in WT lines. Using antibody-based positron emission tomography (immunoPET) imaging, we confirmed that 89Zr-GC33 accumulated exclusively in GPC3-expression xenografts but not in GPC3-KO xenografts with high tumor uptake and tumor-to-liver signal ratio. We show that GPC3-KO liver cancer cell lines exhibit decreased tumorigenicity and altered signaling pathways, including upregulated pMAPK/ERK1/2, compared to parental lines. Furthermore, we successfully distinguished between GPC3+ and GPC3- tumors using the GPC3-targeted immunoPET imaging agent, demonstrating the potential utility of these cell lines in facilitating GPC3-selective drug development.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38958945

RESUMO

BACKGROUND: The stromal microenvironment (SME) is integral to breast cancer (BC) biology, impacting metastatic proclivity and treatment response. Emerging data indicate that host factors may impact the SME, but the relationship between pre-diagnostic host factors and SME phenotype remains poorly characterized, particularly among women of African ancestry. METHODS: We conducted a case-only analysis involving 792 BC patients (17-84 years) from the Ghana Breast Health Study (GBHS). High-accuracy machine-learning algorithms were applied to standard H&E-stained images to characterize SME phenotypes (including percent tumor-associated connective tissue stroma, Ta-CTS (%), and tumor-associated stromal cellular density, Ta-SCD (%)). Associations between pre-diagnostic host factors and SME phenotypes were assessed in multivariable linear regression models. RESULTS: Decreasing Ta-CTS and increasing Ta-SCD were associated with aggressive, mostly high-grade tumors (p-value<0.001). Several pre-diagnostic host factors were associated with Ta-SCD independently of tumor characteristics. Compared with nulliparous women, parous women had higher levels of Ta-SCD [mean (standard deviation, SD) = 31.3% (7.6%) vs. 28.9% (7.1%); p-value=0.01]. Similarly, women with a positive family history of breast cancer had higher levels of Ta-SCD than those without family history [mean (SD) = 33.0% (7.5%)] vs. 30.9% (7.6%); p-value=0.03]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (SD) = 32.0% (7.4%), 31.3% (7.3%), and 29.0% (8.0%) for slight, average, and large body sizes, respectively, p-value=0.005]. CONCLUSIONS: Epidemiological risk factors were associated with varying degrees of stromal cellularity in tumors, independently of clinicopathological characteristics. IMPACT: The findings raise the possibility that epidemiological risk factors may partly influence tumor biology via the SME.

3.
Am J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032602

RESUMO

Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The results show that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.

4.
Res Sq ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38978567

RESUMO

Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discovered under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

5.
Sci Immunol ; 9(97): eadn0178, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996010

RESUMO

Virus-induced cell death is a key contributor to COVID-19 pathology. Cell death induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is well studied in myeloid cells but less in its primary host cell type, angiotensin-converting enzyme 2 (ACE2)-expressing human airway epithelia (HAE). SARS-CoV-2 induces apoptosis, necroptosis, and pyroptosis in HAE organotypic cultures. Single-cell and limiting-dilution analysis revealed that necroptosis is the primary cell death event in infected cells, whereas uninfected bystanders undergo apoptosis, and pyroptosis occurs later during infection. Mechanistically, necroptosis is induced by viral Z-RNA binding to Z-DNA-binding protein 1 (ZBP1) in HAE and lung tissues from patients with COVID-19. The Delta (B.1.617.2) variant, which causes more severe disease than Omicron (B1.1.529) in humans, is associated with orders of magnitude-greater Z-RNA/ZBP1 interactions, necroptosis, and disease severity in animal models. Thus, Delta induces robust ZBP1-mediated necroptosis and more disease severity.


Assuntos
COVID-19 , Necroptose , Piroptose , Proteínas de Ligação a RNA , Mucosa Respiratória , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/patologia , Necroptose/imunologia , Animais , Mucosa Respiratória/virologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Morte Celular/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Apoptose/imunologia
6.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912586

RESUMO

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Proteínas de Membrana/metabolismo , Camundongos , Feminino , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Indometacina/farmacologia , Indometacina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
7.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895230

RESUMO

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data, using unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

8.
Sci Data ; 11(1): 682, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918394

RESUMO

Immunotherapies are revolutionizing cancer care, but many patients do not achieve durable responses and immune-related adverse events are difficult to predict. Quantifying the hundreds of proteins involved in cancer immunity has the potential to provide biomarkers to monitor and predict tumor response. We previously developed robust, multiplexed quantitative assays for immunomodulatory proteins using targeted mass spectrometry, providing measurements that can be performed reproducibly and harmonized across laboratories. Here, we expand upon those efforts in presenting data from a multiplexed immuno-oncology (IO)-3 assay panel targeting 43 peptides representing 39 immune- and inflammation-related proteins. A suite of novel monoclonal antibodies was generated as assay reagents, and the fully characterized antibodies are made available as a resource to the community. The publicly available dataset contains complete characterization of the assay performance, as well as the mass spectrometer parameters and reagent information necessary for implementation of the assay. Quantification of the proteins will provide benefit to correlative studies in clinical trials, identification of new biomarkers, and improve understanding of the immune response in cancer.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas , Neoplasias , Humanos , Anticorpos Monoclonais/imunologia , Imunoterapia , Neoplasias/imunologia
10.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38798323

RESUMO

Saliva contains antimicrobial peptides considered integral components of host innate immunity, and crucial for protection against colonizing microbial species. Most notable is histatin-5 which is exclusively produced in salivary glands with uniquely potent antifungal activity against the opportunistic pathogen Candida albicans. Recently, SARS-CoV-2 was shown to replicate in salivary gland acinar cells eliciting local immune cell activation. In this study, we performed mechanistic and clinical studies to investigate the implications of SARS-CoV-2 infection on salivary histatin-5 production and Candida colonization. Bulk RNA-sequencing of parotid salivary glands from COVID-19 autopsies demonstrated statistically significant decreased expression of histatin genes. In situ hybridization, coupled with immunofluorescence for co-localization of SARS-CoV-2 spike and histatin in salivary gland cells, showed that histatin was absent or minimally present in acinar cells with replicating viruses. To investigate the clinical implications of these findings, salivary histatin-5 levels and oral Candida burden in saliva samples from three independent cohorts of mild and severe COVID-19 patients and matched healthy controls were evaluated. Results revealed significantly reduced histatin-5 in SARS-CoV-2 infected subjects, concomitant with enhanced prevalence of C. albicans. Analysis of prospectively recovered samples indicated that the decrease in histatin-5 is likely reversible in mild-moderate disease as concentrations tended to increase during the post-acute phase. Importantly, salivary cytokine profiling demonstrated correlations between activation of the Th17 inflammatory pathway, changes in histatin-5 concentrations, and subsequent clearance of C. albicans in a heavily colonized subject. The importance of salivary histatin-5 in controlling the proliferation of C. albicans was demonstrated using an ex vivo assay where C. albicans was able to proliferate in COVID-19 saliva with low histatin-5, but not with high histatin-5. Taken together, the findings from this study provide direct evidence implicating SARS-CoV-2 infection of salivary glands with compromised oral innate immunity, and potential predisposition to oral candidiasis.

12.
Cancers (Basel) ; 16(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398178

RESUMO

Merkel cell carcinoma (MCC) and small cell lung cancer (SCLC) can be histologically similar. Immunohistochemistry (IHC) for cytokeratin 20 (CK20) and thyroid transcription factor 1 (TTF-1) are commonly used to differentiate MCC from SCLC; however, these markers have limited sensitivity and specificity. To identify new diagnostic markers, we performed differential gene expression analysis on transcriptome data from MCC and SCLC tumors. Candidate markers included atonal BHLH transcription factor 1 (ATOH1) and transcription factor AP-2ß (TFAP2B) for MCC, as well as carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) for SCLC. Immunostaining for CK20, TTF-1, and new candidate markers was performed on 43 MCC and 59 SCLC samples. All three MCC markers were sensitive and specific, with CK20 and ATOH1 staining 43/43 (100%) MCC and 0/59 (0%) SCLC cases and TFAP2B staining 40/43 (93%) MCC and 0/59 (0%) SCLC cases. TTF-1 stained 47/59 (80%) SCLC and 1/43 (2%) MCC cases. CEACAM6 stained 49/59 (83%) SCLC and 0/43 (0%) MCC cases. Combining CEACAM6 and TTF-1 increased SCLC detection sensitivity to 93% and specificity to 98%. These data suggest that ATOH1, TFAP2B, and CEACAM6 should be explored as markers to differentiate MCC and SCLC.

13.
Hepatology ; 79(4): 768-779, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725716

RESUMO

BACKGROUND AND AIMS: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging. APPROACH AND RESULTS: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)]. We segmented and annotated 117,270 and 465,632 cells from the TIGER-LC and LCI cohorts, respectively. We observed 4 patient groups of TIGER-LC (IC1, IC2, IC3, and IC4) with distinct tumor-immune cellular interaction patterns. In addition, patients from IC2 and IC4 had much better overall survival than those from IC1 and IC3. Noticeably, tumor and CD8 + T-cell interactions were strongly enriched in IC2, the group with the best patient outcomes. The close proximity between the tumor and CD8 + T cells was a strong predictor of patient outcome in both the TIGER-LC and the LCI cohorts. Bulk transcriptomic data from 51 of the 68 HCC cases were used to determine tumor-specific gene expression features of our classified subtypes. Moreover, we observed that the presence of immune spatial neighborhoods in HCC as a measure of overall immune infiltration is linked to better patient prognosis. CONCLUSIONS: Highly multiplexed imaging analysis of liver cancer reveals tumor-immune cellular heterogeneity within spatial contexts, such as tumor and CD8 + T-cell interactions, which may predict patient survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ecossistema , Prognóstico , Perfilação da Expressão Gênica , Microambiente Tumoral , Linfócitos T CD8-Positivos
14.
J Histochem Cytochem ; 71(10): 527-528, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740707
15.
J Pathol ; 260(5): 514-532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37608771

RESUMO

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Humanos , Biomarcadores , Benchmarking , Linfócitos do Interstício Tumoral , Análise Espacial , Microambiente Tumoral
16.
Front Med (Lausanne) ; 10: 1187420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484839

RESUMO

Importance: Multisystem inflammatory syndrome in adults (MIS-A) is a poorly understood complication of SARS-CoV-2 infection with significant morbidity and mortality. Objective: Identify clinical, immunological, and histopathologic features of MIS-A to improve understanding of the pathophysiology and approach to treatment. Design: Three cases of MIS-A following SARS-CoV-2 infection were clinically identified between October 2021 - March 2022 using the U.S. Centers for Disease Control and Prevention diagnostic criteria. Clinical, laboratory, imaging, and tissue data were assessed. Findings: All three patients developed acute onset cardiogenic shock and demonstrated elevated inflammatory biomarkers at the time of hospital admission that resolved over time. One case co-occurred with new onset Type 1 diabetes and sepsis. Retrospective analysis of myocardial tissue from one case identified SARS-CoV-2 RNA. All three patients fully recovered with standard of care interventions plus immunomodulatory therapy that included intravenous immunoglobulin, corticosteroids, and in two cases, anakinra. Conclusion: MIS-A is a severe post-acute sequela of COVID-19 characterized by systemic elevation of inflammatory biomarkers. In this series of three cases, we find that although clinical courses and co-existent diseases vary, even severe presentations have potential for full recovery with prompt recognition and treatment. In addition to cardiogenic shock, glucose intolerance, unmasking of autoimmune disease, and sepsis can be features of MIS-A, and SARS-CoV-2 myocarditis can lead to a similar clinical syndrome.

17.
Pathogens ; 12(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513779

RESUMO

Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.

18.
Front Oncol ; 13: 1168710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205196

RESUMO

Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.

19.
Cell Rep Med ; 4(6): 101052, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37224815

RESUMO

Primary liver cancer is a rising cause of cancer deaths in the US. Although immunotherapy with immune checkpoint inhibitors induces a potent response in a subset of patients, response rates vary among individuals. Predicting which patients will respond to immune checkpoint inhibitors is of great interest in the field. In a retrospective arm of the National Cancer Institute Cancers of the Liver: Accelerating Research of Immunotherapy by a Transdisciplinary Network (NCI-CLARITY) study, we use archived formalin-fixed, paraffin-embedded samples to profile the transcriptome and genomic alterations among 86 hepatocellular carcinoma and cholangiocarcinoma patients prior to and following immune checkpoint inhibitor treatment. Using supervised and unsupervised approaches, we identify stable molecular subtypes linked to overall survival and distinguished by two axes of aggressive tumor biology and microenvironmental features. Moreover, molecular responses to immune checkpoint inhibitor treatment differ between subtypes. Thus, patients with heterogeneous liver cancer may be stratified by molecular status indicative of treatment response to immune checkpoint inhibitors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Imunoterapia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Genômica
20.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169743

RESUMO

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Assuntos
Interferon gama , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Feminino , Humanos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA