Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(2): 644-652, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38356936

RESUMO

The key role of morphological defects (e.g., irregular steps and dislocations) on the selectivity of model Cu catalysts for the electrocatalytic reduction of CO2 (CO2RR) is illustrated here. Cu(111) single-crystal surfaces prepared under ultrahigh vacuum (UHV) conditions and presenting similar chemical and local microscopic surface features were found to display different product selectivity during the CO2RR. In particular, changes in selectivity from hydrogen-dominant to hydrocarbon-dominant product distributions were observed based on the number of CO2RR electrolysis pretreatment cycles performed prior to a subsequent UHV surface regeneration treatment, which lead to surfaces with seemingly identical chemical composition and local crystallographic structure. However, significant mesostructural changes were observed through a micron-scale microscopic analysis, including a higher density of irregular steps on the samples producing hydrocarbons. Thus, our findings highlight that step edges are key for C-C coupling in the CO2RR and that not only atomistic but also mesoscale characterization of electrocatalytic materials is needed in order to comprehend complex selectivity trends.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37200130

RESUMO

Physical walking is often considered the gold standard for VR travel whenever feasible. However, limited free-space walking areas in the real-world do not allow exploring larger-scale virtual environments by actual walking. Therefore, users often require handheld controllers for navigation, which can reduce believability, interfere with simultaneous interaction tasks, and exacerbate adverse effects such as motion sickness and disorientation. To investigate alternative locomotion options, we compared handheld Controller (thumbstick-based) and physical walking versus a seated (HeadJoystick) and standing/stepping (NaviBoard) leaning-based locomotion interface, where seated/standing users travel by moving their head toward the target direction. Rotations were always physically performed. To compare these interfaces, we designed a novel simultaneous locomotion and object interaction task, where users needed to keep touching the center of upward moving target balloons with their virtual lightsaber, while simultaneously staying inside a horizontally moving enclosure. Walking resulted in the best locomotion, interaction, and combined performances while the controller performed worst. Leaning-based interfaces improved user experience and performance compared to Controller, especially when standing/stepping using NaviBoard, but did not reach walking performance. That is, leaning-based interfaces HeadJoystick (sitting) and NaviBoard (standing) that provided additional physical self-motion cues compared to controller improved enjoyment, preference, spatial presence, vection intensity, motion sickness, as well as performance for locomotion, object interaction, and combined locomotion and object interaction. Our results also showed that less embodied interfaces (and in particular the controller) caused a more pronounced performance deterioration when increasing locomotion speed. Moreover, observed differences between our interfaces were not affected by repeated interface usage.

3.
IEEE Trans Vis Comput Graph ; 29(3): 1748-1768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34847032

RESUMO

Using standard handheld interfaces for VR locomotion may not provide a believable self-motion experience and can contribute to unwanted side effects such as motion sickness, disorientation, or increased cognitive load. This paper demonstrates how using a seated leaning-based locomotion interface -HeadJoystick- in VR ground-based navigation affects user experience, usability, and performance. In three within-subject studies, we compared controller (touchpad/thumbstick) with a more embodied interface ("HeadJoystick") where users moved their head and/or leaned in the direction of desired locomotion. In both conditions, users sat on a regular office chair and used it to control virtual rotations. In the first study, 24 participants used HeadJoystick versus Controller in three complementary tasks including reach-the-target, follow-the-path, and racing (dynamic obstacle avoidance). In the second study, 18 participants repeatedly used HeadJoystick versus Controller (8 one-minute trials each) in a reach-the-target task. To evaluate potential benefits of different brake mechanisms, in the third study 18 participants were asked to stop within each target area for one second. All three studies consistently showed advantages of HeadJoystick over Controller: we observed improved performance in all tasks, as well as higher user ratings for enjoyment, spatial presence, immersion, vection intensity, usability, ease of learning, ease of use, and rated potential for daily and long-term use, while reducing motion sickness and task load. Overall, our results suggest that leaning-based interfaces such as HeadJoystick provide an interesting and more embodied alternative to handheld interfaces in driving, reach-the-target, and follow-the-path tasks, and potentially a wider range of scenarios.


Assuntos
Enjoo devido ao Movimento , Realidade Virtual , Humanos , Gráficos por Computador , Locomoção , Enjoo devido ao Movimento/prevenção & controle , Interface Usuário-Computador
4.
IEEE Trans Vis Comput Graph ; 29(12): 5265-5281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36112551

RESUMO

Continuous locomotion in VR provides uninterrupted optical flow, which mimics real-world locomotion and supports path integration . However, optical flow limits the maximum speed and acceleration that can be effectively used without inducing cybersickness. In contrast, teleportation provides neither optical flow nor acceleration cues, and users can jump to any length without increasing cybersickness. However, teleportation cannot support continuous spatial updating and can increase disorientation. Thus, we designed 'HyperJump' in an attempt to merge benefits from continuous locomotion and teleportation. HyperJump adds iterative jumps every half a second on top of the continuous movement and was hypothesized to facilitate faster travel without compromising spatial awareness/orientation. In a user study, Participants travelled around a naturalistic virtual city with and without HyperJump (equivalent maximum speed). They followed waypoints to new landmarks, stopped near them and pointed back to all previously visited landmarks in random order. HyperJump was added to two continuous locomotion interfaces (controller- and leaning-based). Participants had better spatial awareness/orientation with leaning-based interfaces compared to controller-based (assessed via rapid pointing). With HyperJump, participants travelled significantly faster, while staying on the desired course without impairing their spatial knowledge. This provides evidence that optical flow can be effectively limited such that it facilitates faster travel without compromising spatial orientation. In future design iterations, we plan to utilize audio-visual effects to support jumping metaphors that help users better anticipate and interpret jumps, and use much larger virtual environments requiring faster speeds, where cybersickness will become increasingly prevalent and thus teleporting will become more important.

5.
Phys Chem Chem Phys ; 24(48): 29721-29730, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454101

RESUMO

Silica bilayers are stable on various metal substrates, including Ru(0001) that is used for the present study. In a systematic attempt to elucidate the detailed structure of the silica bilayer film and its registry to the metal substrate, we performed a low energy electron diffraction (I/V-LEED) study. The experimental work is accompanied by detailed calculations on the stability, orientation and dynamic properties of the bilayer at room temperature. It was determined, that the film shows a certain structural diversity within the unit cell of the metal substrate, which depends on the oxygen content at the metal-bilayer interface. In connection with the experimental I/V-LEED study, it became apparent, that a high-quality structure determination is only possible if several structural motifs are taken into account by superimposing bilayer structures with varying registry to the oxygen covered substrate. This result is conceptually in line with the recently observed statistical registry in layered 2D-compound materials.

6.
J Am Chem Soc ; 144(36): 16267-16271, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049156

RESUMO

Tuning the properties of oxide surfaces through the adsorption of designed ligands is highly desirable for several applications, such as catalysis. N-Heterocyclic carbenes (NHCs) have been successfully employed as ligands for the modification of metallic surfaces. On the other hand, their potential as modifiers of ubiquitous oxide surfaces still needs to be developed. Here we show that a model NHC binds covalently to a copper oxide surface under UHV conditions. In particular, we report the first example of a covalent bond between NHCs and oxygen atoms from the oxide layer. This study demonstrates that NHC can also act as a strong anchor on oxide surfaces.

7.
Phys Chem Chem Phys ; 24(25): 15265-15270, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723233

RESUMO

The dynamics within an O(2 × 1) adlayer on Ru(0001) is studied by density functional theory and high-speed scanning tunneling microscopy. Transition state theory proposes dynamic oxygen species in the reduced O(2 × 1) layer at room temperature. Collective diffusion processes can result in structural reorientations of characteristic stripe patterns. Spiral high-speed scanning tunneling microscopy measurements reveal this reorientation as a function of time in real space. Measurements, ranging over several minutes with constantly high frame rates of 20 Hz resolved the gradual reorientation. Moreover, reversible fast flipping events of stripe patterns are observed. These measurements relate the observations of long-term atomic rearrangements and their underlying fast processes captured within several tens of milliseconds.

8.
Phys Chem Chem Phys ; 24(30): 17941-17945, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35686510

RESUMO

Two dimensional (2D) materials are a young class of materials that is foreseen to play an important role as building blocks in a range of applications, e.g. flexible electronics. For such applications, mechanical properties such as the bending rigidity κ are important. Only a few published measurements of the bending rigidity are available for 2D materials. Nearly unexplored is the question of how the 2D material density influences the bending rigidity. Here, we present helium atom scattering measurements on a "holey" bilayer silica with a density of 1.4 mg m-2, corresponding to 1.7 monolayers coverage. We find a bending rigidity of 6.6 ± 0.3 meV, which is lower than previously published measurements for a complete 2D film, where a value of 8.8 ± 0.5 meV was obtained. The decrease of bending rigidity with lower density is in agreement with theoretical predictions.

9.
Rev Sci Instrum ; 93(5): 053704, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649753

RESUMO

We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.

10.
Angew Chem Int Ed Engl ; 61(30): e202202127, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468246

RESUMO

N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies.

11.
J Phys Chem C Nanomater Interfaces ; 126(7): 3736-3742, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35242273

RESUMO

Silica films represent a unique two-dimensional film system, exhibiting both crystalline and vitreous forms. While much scientific work has focused on the atomic-scale features of this film system, mesoscale structures can play an important role for understanding confined space reactions and other applications of silica films. Here, we report on mesoscale structures in silica films grown under ultrahigh vacuum and examined with scanning tunneling microscopy (STM). Silica films can exhibit coexisting phases of monolayer, zigzag, and bilayer structures. Both holes in the film structure and atomic-scale substrate steps are observed to influence these coexisting phases. In particular, film regions bordering holes in silica bilayer films exhibit vitreous character, even in regions where the majority film structure is crystalline. At high coverages mixed zigzag and bilayer phases are observed at step edges, while at lower coverages silica phases with lower silicon densities are observed more prevalently near step edges. The STM images reveal that silica films exhibit rich structural diversity at the mesoscale.

12.
Patient Educ Couns ; 105(7): 2328-2337, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34823923

RESUMO

OBJECTIVE: To evaluate the real-time usage of krankheitserfahrungen.de, a website providing scientifically collected and analyzed experiences of persons with various chronic illnesses. METHODS: Web analytics of website use of www.krankheitserfahrungen.de in 2016. Qualitative content analysis of the 150 most and least opened video/audio clip titles in 2018-19. RESULTS: In 2016, krankheitserfahrungen.de had 19,703 unique visits, of which 3925 were returning visits. Between new and returning visits, the latter were characterized by more actions and more time spent on the website. Thematic pages were clicked more often during new visits and person pages were more frequented during returning visits. In 2018-19, video/audio clip titles related to topics around uncertainties and/or decision making were most often clicked, whereas the least clicked clips dealt with topics like illness management, problem-solving, giving advice to others and emotionally difficult topics such as suffering, death and burden for the family. CONCLUSION: A website with balanced, scientifically collected and analyzed patient experiences attracts a sufficient number of users and is used for further explorations. PRACTICE IMPLICATIONS: Using multiple formats, broad topics and diverse personal experiences being accessible through themes or persons is necessary when a scientifically based website on patients' experiences is designed.


Assuntos
Internet , Doença Crônica , Alemanha , Humanos
13.
Rev Sci Instrum ; 92(7): 074104, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340410

RESUMO

Electrocatalyst surfaces prepared under ultrahigh vacuum (UHV) conditions can create model surfaces to better connect theoretical calculations with experimental studies. The development of a single crystal sample holder and inert electrochemical cells prepared with modularity and chemical stability in mind would allow for expensive single crystals to be reused indefinitely in both UHV and electrochemical settings. This sample holder shows reproducible surface preparations for single crystal samples and consistent electrochemical experiments without the introduction of impurities into the surface. The presented setup has been used as a critical piece for the characterization of Cu(111) surfaces under CO2 electrochemical reduction reaction conditions as a test case.

14.
Angew Chem Int Ed Engl ; 60(35): 19169-19175, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34019726

RESUMO

The identification of the active sites for the electrochemical reduction of CO2 (CO2 RR) to specific chemical products is elusive, owing in part to insufficient data gathered on clean and atomically well-ordered electrode surfaces. Here, ultrahigh vacuum based preparation methods and surface science characterization techniques are used with gas chromatography to demonstrate that subtle changes in the preparation of well-oriented Cu(100) and Cu(111) single-crystal surfaces drastically affect their CO2 RR selectivity. Copper single crystals with clean, flat, and atomically ordered surfaces are predicted to yield hydrocarbons; however, these were found experimentally to favor the production of H2 . Only when roughness and defects are introduced, for example by electrochemical etching or a plasma treatment, are significant amounts of hydrocarbons generated. These results show that structural and morphological effects are the key factors determining the catalytic selectivity of CO2 RR.

15.
Chemistry ; 27(6): 1870-1885, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33118653

RESUMO

The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.

16.
Angew Chem Int Ed Engl ; 59(26): 10587-10593, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32173977

RESUMO

The crystalline-to-vitreous phase transformation of a SiO2 bilayer supported on Ru(0001) was studied by time-dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone-Wales-type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate-determining step for the formation of a Stone-Wales-type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO2 bilayer and Ru(0001) support lowers the activation energy for breaking the Si-O bond compared to the unsupported film. Pre-exponential factors obtained in UHV and in O2 atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO2 bilayer plays a role on how the disordering propagates within the film.

17.
Angew Chem Int Ed Engl ; 58(32): 10903-10908, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31050096

RESUMO

A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images.

18.
Phys Chem Chem Phys ; 20(21): 14725-14739, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29774919

RESUMO

The recent experimental discovery of a semi two-dimensional silica glass has offered a realistic description of the random network theory of a silica glass structure, initially discussed by Zachariasen. To study the structure formation of silica in two dimensions, we introduce a two-body force field, based on a soft core Yukawa potential. The different configurations, sampled via Molecular dynamics simulations, can be directly compared with the experimental structures, which have been provided in the literature. The parameters of the force field are obtained from comparison of the nearest-neighbor distances between experiment and simulation. Further key properties such as angle distributions, distribution of ring sizes and triplets of rings are analyzed and compared with the experiment. Of particular interest is the spatial correlation of ring sizes. In general, we observe a very good agreement between experiment and simulation. Additional insight from the simulations is provided about the temporal and spatial stability of the rings in dependence of their size.

19.
J Am Chem Soc ; 140(19): 6164-6168, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29688718

RESUMO

We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO2 silica bilayer film which is chemically decoupled from the substrate.

20.
Chemistry ; 24(10): 2317-2327, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28857287

RESUMO

In chemistry and physics the electronic charge on a species or material is one important determinant of its properties. In the present Minireview, the essential requirements for a model catalyst system suitable to study charge control are discussed. The ideal model catalyst for this purpose consists of a material system, which comprises a single crystal metal support, covered by an epitaxially grown ultrathin oxide film, and flat, two-dimensional nanoparticles residing on this film. Several examples from the literature are selected and presented, which illustrate various aspects of electron transport from the support to the nanoparticle and vice versa. Key experiments demonstrate charge control within such model catalysts and give direct evidence for a chemical reaction at the perimeter of Au nanoparticles. The concepts derived from these studies are then taken a step further to see how they may be applied for bulk powder oxide supported nanoparticles as they are frequently found in catalytically active materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA