Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Biofilm ; 7: 100195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639000

RESUMO

Interspecies interactions within a biofilm community influence population dynamics and community structure, which in turn may affect the bacterial stress response to antimicrobials. This study was conducted to assess the impact of interactions between Kocuria salsicia and a three-species biofilm community (comprising Stenotrophomonas rhizophila, Bacillus licheniformis, and Microbacterium lacticum) on biofilm mass, the abundance of individual species, and their survival under a laboratory-scale cleaning and disinfection (C&D) regime. The presence of K. salsicia enhanced the cell numbers of all three species in pairwise interactions. The outcomes derived from summing up pairwise interactions did not accurately predict the bacterial population dynamics within communities of more than two species. In four-species biofilms, we observed the dominance of S. rhizophila and B. licheniformis, alongside a concurrent reduction in the cell counts of K. salsicia and M. lacticum. This pattern suggests that the underlying interactions are not purely non-transitive; instead, a more complex interplay results in the dominance of specific species. We observed that bacterial spatial organization and matrix production in different mixed-species combinations affected survival in response to C&D. Confocal microscopy analysis of spatial organization showed that S. rhizophila localized on the biofilm formed by B. licheniformis and M. lacticum, and S. rhizophila was more susceptible to C&D. Matrix production in B. licheniformis, evidenced by alterations in biofilm mass and by scanning electron microscopy, demonstrated its protective role against C&D, not only for this species itself, but also for neighbouring species. Our findings emphasise that various social interactions within a biofilm community not only affect bacterial population dynamics but also influence the biofilm community's response to C&D stress.

2.
Int J Food Microbiol ; 418: 110709, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663147

RESUMO

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.


Assuntos
Bacillus cereus , Temperatura Alta , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Termotolerância , Adaptação Fisiológica , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Genoma Bacteriano , Evolução Biológica
3.
Chemosphere ; 352: 141455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367872

RESUMO

The occurrence of antibiotic residues in the environment has received considerable attention because of their potential to select for bacterial resistance. The overuse of antibiotics in human medicine and animal production results in antibiotic residues entering the aquatic environment, but concentrations are currently not well determined. This study investigates the occurrence of antibiotics in groundwater in areas strongly related to agriculture and the antibiotic treatment of animals. A multiresidue method was validated according to EU Regulation 2021/808, to allow (semi-)quantitative analysis of 78 antibiotics from 10 different classes: ß-lactams, sulfonamides, tetracyclines, lincosamides, amphenicols, (fluoro)quinolones, macrolides, pleuromutilins, ansamycins and diaminopyrimidines using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). This method was used to test different storage conditions of these water samples during a stability study over a period of 2 weeks. Sulfonamides, lincosamides and pleuromutilins were the most stable. Degradation was most pronounced for ß-lactam antibiotics, macrolides and ansamycins. To maintain stability, storage of samples at -18 °C is preferred. With the validated method, antibiotic residues were detected in groundwater, sampled from regions associated with intensive livestock farming in Flanders (Belgium). Out of 50 samples, 14% contained at least one residue. Concentrations were low, ranging from < LOD to 0.03 µg/L. Chloramphenicol, oxolinic acid, tetracycline and sulfonamides (sulfadiazine, sulfadoxine, sulfamethazine and sulfisoxazole) were detected. This study presents a new method for the quantification of antibiotic residues, which was applied to investigate the presence of antibiotic residues in groundwater in Flanders.


Assuntos
Resíduos de Drogas , Água Subterrânea , Animais , Humanos , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Lactamas Macrocíclicas/análise , Sulfanilamida/análise , Cloranfenicol/análise , Sulfonamidas/análise , Lincosamidas , Pleuromutilinas , Macrolídeos/análise , Resíduos de Drogas/análise
4.
ISME Commun ; 3(1): 118, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968339

RESUMO

Identifying interspecies interactions in mixed-species biofilms is a key challenge in microbial ecology and is of paramount importance given that interactions govern community functionality and stability. We previously reported a bacterial four-species biofilm model comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus that were isolated from the surface of a dairy pasteuriser after cleaning and disinfection. These bacteria produced 3.13-fold more biofilm mass compared to the sum of biofilm masses in monoculture. The present study confirms that the observed community synergy results from dynamic social interactions, encompassing commensalism, exploitation, and amensalism. M. lacticum appears to be the keystone species as it increased the growth of all other species that led to the synergy in biofilm mass. Interactions among the other three species (in the absence of M. lacticum) also contributed towards the synergy in biofilm mass. Biofilm inducing effects of bacterial cell-free-supernatants were observed for some combinations, revealing the nature of the observed synergy, and addition of additional species to dual-species combinations confirmed the presence of higher-order interactions within the biofilm community. Our findings provide understanding of bacterial interactions in biofilms which can be used as an interaction-mediated approach for cultivating, engineering, and designing synthetic bacterial communities.

5.
Cell Rep Med ; 4(9): 101190, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683651

RESUMO

Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.


Assuntos
Colo , Probióticos , Humanos , Intestino Delgado , Transporte Biológico , Fezes
6.
Front Microbiol ; 14: 1159434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125177

RESUMO

Most biofilms within the food industry are formed by multiple bacterial species which co-exist on surfaces as a result of interspecies interactions. These ecological interactions often make these communities tolerant against antimicrobials. Our previous work led to the identification of a large number (327) of highly diverse bacterial species on food contact surfaces of the dairy, meat, and egg industries after routine cleaning and disinfection (C&D) regimes. In the current study, biofilm-forming ability of 92 bacterial strains belonging to 26 genera and 42 species was assessed and synergistic interactions in biofilm formation were investigated by coculturing species in all possible four-species combinations. Out of the total 455 four-species biofilm combinations, greater biofilm mass production, compared to the sum of biofilm masses of individual species in monoculture, was observed in 34 combinations. Around half of the combinations showed synergy in biofilm mass > 1.5-fold and most of the combinations belonged to dairy strains. The highest synergy (3.13-fold) was shown by a combination of dairy strains comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus. The observed synergy in mixed biofilms turned out to be strain-specific rather than species-dependent. All biofilm combinations showing remarkable synergy appeared to have certain common species in all combinations which shows there are keystone industry-specific bacterial species which stimulate synergy or antagonism and this may have implication for biofilm control in the concerned food industries.

7.
Heliyon ; 9(5): e16052, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215782

RESUMO

When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 µg/kg manure), sulfadiazine (1000 µg/kg manure), or lincomycin (1000 µg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.

8.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679407

RESUMO

This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.


Assuntos
Aminas Biogênicas , Inocuidade dos Alimentos , Animais , Aminas Biogênicas/análise , Histamina/análise , Aminoácidos
9.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290099

RESUMO

The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), ß-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like ß-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.

10.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35640890

RESUMO

The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life, which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonize a surface develop architecturally complex surface-adhered communities, which we refer to as biofilms. They are embedded in polymeric structural scaffolds and serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed coexistence of microorganisms from all domains of life, including Bacteria, Archaea, and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.


Assuntos
Archaea , Biofilmes , Archaea/fisiologia , Bactérias/metabolismo , Ecossistema , Plantas , Percepção de Quorum
11.
Sci Total Environ ; 822: 153518, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101484

RESUMO

Antibiotic residues and antibiotic resistance genes can enter the environment via fertilization with calf and pig manure. In a longitudinal study, nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and 56 antibiotic residues were investigated in 288 soil samples and 8 corresponding slurry samples from 6 pig farms and 2 veal farms using qPCR and LC-MS/MS, respectively. A significant increase in gene copy number of tet(M), erm(B), erm(F) and sul2 was observed in all the soil layers between sampling times prior to (T1) and 2-3 weeks after fertilization (T3). Tet(B), tet(Q) and tet(L) were least abundant in the soil among the genes tested. From 7 classes of antibiotics, 20 residues were detected in soil and slurry using an optimized and validated extraction method. Flumequine was detected in all soil samples in concentrations below 100 µg/kg despite being detected in only half of the corresponding slurry samples. Doxycycline, oxytetracycline, lincomycin and sulfadiazine were also frequently detected in concentrations ranging from 0.1 µg/kg to 500 µg/kg and from 2 µg/kg and 9480 µg/kg in soil and slurry, respectively. Furthermore a positive association between the presence of antibiotic residues (total antibiotic load) and antibiotic resistance genes in soil was found. One possible explanation for this is a simultaneous introduction of antibiotic residues and resistance genes upon application of animal slurry.


Assuntos
Antibacterianos , Solo , Animais , Antibacterianos/análise , Bovinos , Cromatografia Líquida , Genes Bacterianos , Estudos Longitudinais , Esterco/análise , Microbiologia do Solo , Suínos , Espectrometria de Massas em Tandem
12.
Vet Sci ; 8(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34679062

RESUMO

Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.

13.
Microorganisms ; 9(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200022

RESUMO

Although refrigeration and modified-atmosphere packaging (MAP) allow for an extended shelf life of cooked charcuterie products, they are still susceptible to bacterial spoilage. To obtain better insights into factors that govern product deterioration, ample information is needed on the associated microbiota. In this study, sliced MAP cooked ham and cooked chicken samples were subjected to culture-dependent and culture-independent microbial analysis. In total, 683 bacterial isolates were obtained and identified from 60 samples collected throughout the storage period. For both charcuterie types, lactic acid bacteria (LAB) constituted the most abundant microbial group. In cooked ham, Brochothrix thermosphacta was highly abundant at the beginning of the shelf-life period, but was later overtaken by Leuconostoc carnosum and Lactococcus piscium. For cooked chicken products, Latilactobacillus sakei was most abundant throughout the entire period. Additionally, 13 cooked ham and 16 cooked chicken samples were analyzed using metabarcoding. Findings obtained with this method were generally in accordance with the results from the culture-dependent approach, yet they additionally demonstrated the presence of Photobacterium at the beginning of the shelf-life period in both product types. The results indicated that combining culture-dependent methods with metabarcoding can give complementary insights into the evolution of microorganisms in perishable foods.

14.
FEMS Microbiol Ecol ; 97(8)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34190973

RESUMO

Bacterial species in the human gut predominantly exist in the form of mixed-species biofilms on mucosal surfaces. In this study, the biofilm-forming ability of many human gut bacterial strains (133 strains recovered from human faeces) on mucin-coated and non-coated polystyrene surfaces was determined. A significant variation (P < 0.05) in the biofilm-forming ability of many bacterial species on both surfaces was noticed. Based on some preliminary trials, four bacterial species were selected (Bifidobacterium bifidum, Bifidobacterium longum subsp. infantis, Parabacteroides distasonis and Bacteroides ovatus), which could not form any abundant biofilm individually under the in vitro conditions investigated, but produced abundant biofilms when co-cultured in different combinations of two, three and four species, giving an evidence of synergistic interactions in multispecies biofilm formation. There was a 4.74-fold increase in the biofilm mass when all strains developed a biofilm together. Strain-specific qPCR analysis showed that B. bifidum was the most dominant species (56%) in the four-species biofilm after 24 h, followed by B. longum subsp. infantis (36.2%). Study involving cell free supernatant of the cooperating strains showed that cell viability as well as physical presence of cooperating cells were prerequisites for the observed synergy in biofilms. The molecular mechanism behind these interactions and subsequent effects on the functionality of the strains involved were not determined in our study but merit further work.


Assuntos
Biofilmes , Microbioma Gastrointestinal , Mucinas , Bacteroides , Bacteroidetes , Bifidobacterium bifidum , Bifidobacterium longum subspecies infantis , Humanos
15.
Antibiotics (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918676

RESUMO

Antibiotic resistant bacteria and antibiotic residues can enter the environment when using animal manure as fertilizer. Twenty-five mixed beef cattle farmyard manure samples and 9 mixed fattening calf slurry samples from different farms across Belgium were investigated for the presence of 69 antibiotic residues, antibiotic resistant Escherichia coli and Salmonella spp. Doxycycline, oxytetracycline, ciprofloxacin, enrofloxacin, flumequine and lincomycin were detected in all fattening calf slurry samples with mean concentrations of 2776, 4078, 48, 31, 536 and 36 µg/kg manure, respectively. Sulfadiazine was detected at a mean concentration of 10,895 µg/kg. Further, antibiotic residues were found in only 4 of the 25 beef cattle farmyard manure samples. Oxytetracycline was detected twice below 500 µg/kg. Paromomycin, ciprofloxacin and enrofloxacin were detected in a concentration below 100 µg/kg. Of E. coli isolates, 88% and 23% from fattening calf slurry and beef cattle farmyard manure, respectively, were resistant to at least one of the antibiotics tested. Multi-drug resistance was observed at a maximum of 10 and 7 antibiotics, respectively. The occurrence of antibiotic resistant E. coli and antibiotic residues is shown to be higher in fattening calf slurry than in beef cattle farmyard manure used for agricultural field fertilization.

16.
Crit Rev Microbiol ; 47(3): 338-358, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33651958

RESUMO

Existence of most bacterial species, in natural, industrial, and clinical settings in the form of surface-adhered communities or biofilms has been well acknowledged for decades. Research predominantly focusses on single-species biofilms as these are relatively easy to study. However, microbiologists are now interested in studying multispecies biofilms and revealing interspecific interactions in these communities because of the existence of a plethora of different bacterial species together in almost all natural settings. Multispecies biofilms-led emergent properties are triggered by bacterial social interactions which have huge implication for research and practical knowledge useful for the control and manipulation of these microbial communities. Here, we discuss some important bacterial interactions that take place in multispecies biofilm communities and provide insights into community-wide changes that indicate bacterial interactions and elucidate underlying mechanisms.


Assuntos
Biofilmes , Interações Microbianas , Microbiota , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Especificidade da Espécie
17.
Life (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670965

RESUMO

Along with (in) direct contact with animals and a contaminated environment, humans are exposed to antibiotic-resistant bacteria by consumption of food. The implications of ingesting antibiotic-resistant commensal bacteria are unknown, as dose-response data on resistance transfer and spreading in our gut is lacking. In this study, transfer of a resistance plasmid (IncF), harbouring several antibiotic resistance genes, from a commensal E. coli strain towards human intestinal microbiota was assessed using a Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME). More specifically, the effect of the initial E. coli plasmid donor concentration (105 and 107 CFU/meal), antibiotic treatment (cefotaxime) and human individual (n = 6) on plasmid transfer towards lumen coliforms and anaerobes was determined. Transfer of the resistance plasmid to luminal coliforms and anaerobes was observed shortly after the donor strain arrived in the colon and was independent of the ingested dose. Transfer occurred in all six simulated colons and despite their unique microbial community composition, no differences could be detected in antibiotic resistance transfer rates between the simulated human colons. After 72 h, resistant coliform transconjugants levels ranged from 7.6 × 104 to 7.9 × 106 CFUcefotaxime resistant/Ml colon lumen. Presence of the resistance plasmid was confirmed and quantified by PCR and qPCR. Cefotaxime treatment led to a significant reduction (85%) in resistant coliforms, however no significant effect on the total number of cultivable coliforms and anaerobes was observed.

18.
Int J Food Microbiol ; 341: 109072, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524880

RESUMO

Proper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C. Although the endospores of B. weihenstephanensis are generally less heat resistant compared to their mesophilic or thermotolerant relatives, our data now show that non-emetic B. weihenstephanensis strain LMG 18989T can readily and reproducibly evolve to acquire much enhanced endospore heat resistance. In fact, one of the B. weihenstephanensis mutants from directed evolution by wet heat in this study yielded endospores displaying a > 4-fold increase in D-value at 91 °C compared to the parental strain. Moreover, these mutant endospores retained their superior heat resistance even when sporulation was performed at 10 °C. Interestingly, increased endospore heat resistance did not negatively affect the vegetative growth capacities of the evolved mutants at lower (7 °C) and upper (37 °C) growth temperature boundaries, indicating that the correlation between cardinal growth temperatures and endospore heat resistance which is observed among bacterial sporeformers is not necessarily causal.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Evolução Biológica , Depsipeptídeos/biossíntese , Manipulação de Alimentos , Temperatura Alta
19.
Pathogens ; 10(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451094

RESUMO

Biosecurity seems to be the most promising tool for Campylobacter control on poultry farms. A longitudinal molecular epidemiological study was performed during two production cycles, in which the broilers, the poultry house, and the environment of 10 (mixed) broiler farms were monitored weekly. Cecal droppings from the second production cycle were also used for 16S metabarcoding to study the differences in the microbiota of colonized and uncolonized flocks. Results showed that 3 out of 10 farms were positive for Campylobacter in the first production cycle, and 4 out of 10 were positive in the second. Broilers became colonized at the earliest when they were four weeks old. The majority of the flocks (57%) became colonized after partial depopulation. Before colonization of the flocks, Campylobacter was rarely detected in the environment, but it was frequently isolated from cattle and swine. Although these animals appeared to be consistent carriers of Campylobacter, molecular typing revealed that they were not the source of flock colonization. In accordance with previous reports, this study suggests that partial depopulation appears to be an important risk factor for Campylobacter introduction into the broiler house. Metabarcoding indicated that two Campylobacter-free flocks carried high relative abundances of Megamonas in their ceca, suggesting potential competition with Campylobacter.

20.
BMC Microbiol ; 20(1): 373, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308162

RESUMO

BACKGROUND: Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java. RESULTS: To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java. CONCLUSIONS: This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system.


Assuntos
Biofilmes/crescimento & desenvolvimento , Agentes de Controle Biológico , Água Potável/microbiologia , Pseudomonas putida/fisiologia , Salmonella/fisiologia , Criação de Animais Domésticos , Animais , Galinhas , Indonésia , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA