Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Insect Sci ; 4: 1475411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359693

RESUMO

Artificial diets are widely used to produce insects for research and education programs. Completed diets, in which the diets are fully made from individual ingredients and ready to use, often have high water activity, making them vulnerable to degradation. Proper storage is critical to maintaining diet quality, yet the storage conditions are not well investigated. In this study, we characterized the effects of storage conditions (temperatures and storage duration) on the quality of a diet capable of rearing both specialist and generalist insect species. The completed diet, produced by both private industry and a USDA-Agricultural Research Service laboratory, was exposed to varying temperatures during a 24-hour transit over 1600 km. After transit, it was stored at 4°C for a total storage period of 28 days. In a separate experiment, the completed diet was stored immediately after diet production at five fixed temperatures (-20, 4, 22, 25, and 33°C) for up to 28 days. For both experiments, at 5 intervals after storage (1, 7, 14, 21, and 28 days), diet quality was accessed by life history parameters (survival, molting, and weight) of western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae, the most serious maize pest in the United States. Our results showed that exposure to varying temperatures between -2°C and 27°C for 24 hours had no significant impact on diet quality. However, extended storage (beyond 24 hours) at any of the fixed temperatures negatively affected diet quality. Insects reared on diets stored for over 24 hours at fixed temperatures ranging from -20°C to 33°C had significant declines in performance. Among the tested temperatures, -20°C and 4°C were found to be the most effective for preserving diet quality. At these low temperatures, there were no significant changes in insect weight and survival for diets stored within 21 and 28 days, respectively, though molting was significantly reduced within 7 days of storage. These findings provide the base of information on the storage conditions for completed diets, supporting the production of healthy insects.

2.
Front Insect Sci ; 4: 1392198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015485

RESUMO

We identified a single diet formulation that can be used for three Diabrotica species including southern (SCR), western (WCR), and northern corn rootworm (NCR) by evaluating the performance of these pests on specialized diets (F9800B diet for SCR, WCRMO-2 diet for WCR, and NCRMO-1 diet for NCR) and a larval diet (F9772 diet) widely used for lepidopteran species. After 10 days of rearing, the WCRMO-2 diet yielded better or equal larval growth and development of all three rootworm species compared to other diets. For SCR larvae, the WCRMO-2 diet outperformed other diets. Larval fresh weight, percent molt to 2nd instar, and percent molt to 3rd instar on the WCRMO-2 diet were 12-fold, 2.7-fold, and 14-fold increases, respectively compared to that of the F9800B diet. Significantly more SCR larvae survived on the WCRMO-2 diet (98.9%) than on the F9800B diet (90.6%). The WCRMO-2 diet supported WCR and NCR larvae equal to the NCRMO-1 diet and better than other diets. The F9772 diet was the worst diet of all examined species. The availability of a universal diet (the WCRMO-2 diet) for the three Diabrotica species would facilitate research programs to monitor resistance development and develop new control tactics targeting these important pests.

3.
J Econ Entomol ; 117(1): 178-186, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011807

RESUMO

The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) is a major pest of maize in the United States Corn Belt. Recently, resistance to Bacillus thuringiensis (Bt) maize was reported in North Dakota and increased use of Bt maize hybrids could facilitate resistance evolution in other maize-producing states. In this study, susceptibility to Bt proteins was evaluated in wild D. barberi populations from 8 fields collected in 5 different states (Minnesota, Missouri, Nebraska, Iowa, and North Dakota). Field populations were compared to a susceptible D. barberi colony in seedling and diet toxicity assays conducted with 3 concentrations of Cry3Bb1 (0.4, 4.0, and 40.0 µg/cm2) and Gpp34/Tpp35Ab1 (previously called Cry34/35Ab1; 1.4, 14.0, and 140.0 µg/cm2). The 2019 population from Meeker Co., Minnesota (MN-2019), exhibited the lowest mortality to Cry3Bb1 and also had nominally lowest mortality to Gpp34/Tpp35Ab1 at the highest concentrations tested in diet toxicity assays. Percent second instar was also highest for larvae of the Minnesota population surviving Cry3Bb1. In seedling assays, MN and IA-2018 populations exhibited the highest proportion survival and dry weight to both proteins expressed in corn. No significant differences in mortality, percent second instar, and dry weight were observed at the highest concentration for both proteins among the populations collected in in 2020. Most D. barberi populations were still highly susceptible to Cry3Bb1 and Gpp34/Tpp35Ab1 proteins based on diet and seedling assays, but resistance appears to be developing in some D. barberi populations. Now that methods are available, resistance monitoring may also be needed for D. barberi in some regions.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Zea mays/genética , Plântula , Proteínas de Bactérias/genética , Plantas Geneticamente Modificadas , Endotoxinas , Larva , Bacillus thuringiensis/genética , Dieta , Resistência a Inseticidas , Controle Biológico de Vetores
4.
Sci Rep ; 13(1): 17583, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845376

RESUMO

Western, northern, Mexican, and southern corn rootworms (WCR, NCR, MCR, and SCR) are serious corn pests. We evaluated host search behavior of these pests on six plant species using a video tracking system. After a 5-min exposure to plant roots, behavioral parameters were automatically recorded and used to quantify the search behavior. The search behavior was not observed for sorghum since no neonates survived after contacting sorghum roots. After exposures to corn roots, all neonates exhibited the localized search behaviors (i.e., shortening total distance traveled, lowering movement speed, increasing turn angle, moving farther from origin) which are used to stay in and search within root systems. When larvae contacted roots of wheat, barley, oats, soybean, or controls, they expanded the search area by extending the travel path, increasing velocity, and reducing turn angles and total distance moved. The intensity of the search expansion is highly associated with the host preferences known for the four rootworm species and subspecies. Neonates of each corn rootworm exhibited distinct search behaviors. In fact, NCR larvae had the highest speed, the greatest travel path, and the lowest turn angle, whereas MCR larvae had the highest turn angle and moved faster than WCR and SCR larvae.


Assuntos
Besouros , Herbivoria , Animais , Humanos , Recém-Nascido , Larva , Zea mays
5.
J Econ Entomol ; 116(6): 2184-2192, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816495

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is the most serious economic pest of maize, Zea mays (L.) (Poales: Poaceae), in the U.S. Corn Belt and also threatens production in Europe. Traditional management options have repeatedly failed over time as western corn rootworm rapidly develops resistance to insecticides, transgenic maize and even crop rotation. Traits that improve host plant resistance and tolerance are highly sought after by plant breeders for crop protection and pest management. However, maize resistance to western corn rootworm appears to be highly complex and despite over 75 yr of breeding efforts, there are no naturally resistant hybrids available commercially. Using phenotypic data from field and greenhouse experiments on a highly diverse collection of 282 inbred lines, we screened and genetically mapped western corn rootworm-related traits to identify genetic loci which may be useful for future breeding or genetic engineering efforts. Our results confirmed that western corn rootworm resistance is complex with relatively low heritability due in part to strong genotype by environment impacts and the inherent difficulties of phenotyping below ground root traits. The results of the Genome Wide Associated Study identified 29 loci that are potentially associated with resistance to western corn rootworm. Of these loci, 16 overlap with those found in previous transcription or mapping studies indicating a higher likelihood they are truly involved in maize western corn rootworm resistance. Taken together with previous studies, these results indicate that breeding for natural western corn rootworm resistance will likely require the stacking of multiple small effect loci.


Assuntos
Besouros , Animais , Besouros/genética , Zea mays/genética , Estudo de Associação Genômica Ampla , Defesa das Plantas contra Herbivoria , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal , Larva , Endotoxinas , Controle Biológico de Vetores
6.
J Econ Entomol ; 116(3): 726-732, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37021702

RESUMO

Bioassays involving newly hatched larval insects can be limited by the larvae's feeding state. Assays attempting to monitor mortality effects can be negatively affected by starvation effects on the larvae. Neonate western corn rootworms have significant reductions in viability if not provided food within 24 h post hatch. The recent development of an improved artificial diet for western corn rootworm larvae provides a new bioassay type for evaluating entomopathogenic nematodes that also makes the testing arena easy to observe. Here, we evaluated four species of entomopathogenic nematodes including Heterorhabditis bacteriophora Poinar, Steinernema carpocapsae (Weiser), Steinernema diaprepesi Nguyen & Duncan, and Steinernema rarum (de Doucet) against neonate western corn rootworm, Diabrotica virgifera virgifera LeConte, in 96-well plate diet bioassays. Nematode inoculation levels were 0, 15, 30, 60, and 120 nematodes per larva. Percentage mortality increased for each species as the rate of inoculation increased. Overall, H. bacteriophora and S. carpocapsae caused the greatest amount of larval mortality. The diet-based bioassays were shown to be an effective method for nematode exposure to insect pests. The assays provided adequate moisture to keep nematode from desiccating while also allowing freedom of movement around the arenas. Both rootworm larvae and nematodes were contained within the assay arenas. The addition of nematodes did not cause any significant deterioration of the diet within the three-day period of testing. Overall, the diet bioassays worked well as a measure of entomopathogenic nematode virulence.


Assuntos
Besouros , Rabditídios , Animais , Zea mays/genética , Virulência , Larva , Bioensaio , Plantas Geneticamente Modificadas , Endotoxinas
7.
PLoS One ; 18(2): e0267220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800363

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.


Assuntos
Bacillus thuringiensis , Chryseobacterium , Besouros , Praguicidas , Animais , Zea mays/genética , Chryseobacterium/metabolismo , Praguicidas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Larva/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Resistência a Inseticidas
8.
J Econ Entomol ; 116(1): 263-267, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36539338

RESUMO

Insect resistance to toxins derived from Bacillus thuringiensis (Bt) is a major issue in agriculture. Resistance to Bt has been linked to the loss of toxin binding sites within the insect, changes within the gut microbiota, and midgut tissue regeneration. Histopathological documentation of intoxication and resistance to Bt is lacking for rootworms in the genus Diabrotica (Coleoptera: Chrysomelidae), a major target of Bt corn. Here, we document the morphological response of both Bt-resistant and Bt-susceptible larval western corn rootworm, Diabrotica virgifera virgifera LeConte, to intoxication with eCry3.1Ab. Gut lumen structural differences are subtle between the two colonies when feeding on non-Bt corn. However, upon ingestion of Bt-corn roots, susceptible larvae develop symptoms indicative of gut disruption by Bt, whereas resistant larvae incur milder effects. Mild disruption of the peritrophic matrix and gut lumen is accompanied by stem cell proliferation that may lead to midgut tissue regeneration. These results help contextualize the multifaceted nature of Bt-resistance in western corn rootworm for the first time from a histopathological perspective.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Larva/fisiologia , Bacillus thuringiensis/genética , Zea mays/genética , Endotoxinas/farmacologia , Controle Biológico de Vetores , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Besouros/fisiologia , Resistência a Inseticidas
9.
J Insect Sci ; 22(6)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480227

RESUMO

The western corn rootworm (WCR), Diabrotica vifgirera virgifera LeConte, (Coleoptera: Chrysomelidae) causes significant economic damage in corn production each year. Resistance to insecticides and transgenic corn with Bacillus thuringiensis (Bt), Berliner toxins have been reported throughout the United States Corn Belt. Corn breeding programs for natural resistance against WCR larvae could potentially assist in rootworm management. Root damage and root regrowth of eight corn lines were evaluated in field assays at three different locations. Results indicated the inbred 'Mp708' had the greatest root damage and was significantly greater than damage for the susceptible control, B37×H84. In greenhouse assays, we evaluated four of these lines plus a hybrid expressing the mCry3A Bt toxin for damage. The results indicated that Mp708 had significantly higher root damage when compared to 'CRW3(S1)C6' and 'MIR604'. Despite previous work suggesting otherwise, we conclude that Mp708 is highly susceptible to the WCR larvae based on root damage in field and greenhouse plant assays.


Assuntos
Besouros , Animais , Besouros/genética , Zea mays/genética
10.
Sci Rep ; 12(1): 17858, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284199

RESUMO

The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Larva/fisiologia , Chromobacterium , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Endotoxinas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Proteínas de Bactérias/metabolismo , Besouros/fisiologia , Zea mays/genética
11.
Sci Rep ; 12(1): 11639, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804088

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is the most serious pest of maize (Zea mays L.) in the U.S. Corn Belt and parts of Europe. Transgenic maize hybrids expressing at least one of the four currently available insecticidal toxins from Bacillus thuringiensis (Bt) Berliner, currently the most widely adopted control method in continuous maize, have faltered due to the emergence of resistance. The resistance mechanisms of WCR to Bt toxins are not fully understood. We identified metabolic profiles of susceptible and resistant WCR larvae fed on maize hybrids expressing each of three available Cry3 proteins (eCry3Ab1, mCry3A, and Cry3Bb1) targeting corn rootworms and a control non-Bt maize via an untargeted metabolomics approach. Over 580 unique metabolites found in WCR larvae were classified into different pathways (amino acids, carbohydrates, cofactors and vitamins, energy, lipid, nucleotide, peptide, and xenobiotics). By exploring shifts in WCR larval metabolome exclusively by Bt toxins, several candidate metabolites and metabolic pathways were identified in susceptible and resistant larvae that may be involved in defense against or recovery from Bt ingestion by these larvae. These findings would provide mechanistic insights into altered metabolic pathways associated with the resistance mechanisms of WCR to Bt toxins.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Besouros/genética , Endotoxinas/genética , Endotoxinas/toxicidade , Resistência a Inseticidas/genética , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plântula , Zea mays/genética
12.
Front Microbiol ; 13: 898744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722352

RESUMO

Microbial communities associated with animals vary based on both intrinsic and extrinsic factors. Of many possible determinants affecting microbiome composition, host phylogeny, host diet, and local environment are the most important. How these factors interact across spatial scales is not well understood. Here, we seek to identify the main influences on microbiome composition in a specialist insect, the western corn rootworm (WCR; Diabrotica virgifera virgifera), by analyzing the bacterial communities of adults collected from their obligate host plant, corn (Zea mays), across several geographic locations and comparing the patterns in communities to its congeneric species, the northern corn rootworm (NCR; Diabrotica barberi). We found that bacterial communities of WCR and NCR shared a portion of their bacterial communities even when collected from disparate locations. However, within each species, the location of collection significantly influenced the composition of their microbiome. Correlations of geographic distance between sites with WCR bacterial community composition revealed different patterns at different spatial scales. Community similarity decreased with increased geographic distance at smaller spatial scales (~25 km between the nearest sites). At broad spatial scales (>200 km), community composition was not correlated with distances between sites, but instead reflected the historical invasion path of WCR across the United States. These results suggest bacterial communities are structured directly by dispersal dynamics at small, regional spatial scales, while landscape-level genetic or environmental differences may drive community composition across broad spatial scales in this specialist insect.

13.
Food Chem X ; 13: 100253, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498991

RESUMO

Adenanthera pavonina, an underutilized tropical tree, is being promoted as an alternative food source for meeting the nutritional needs of human and animals. In this study, we have shown that trypsin inhibitors as one of the predominant proteins in the seeds of A. pavonina. DE-52 column chromatography resulted in the identification of four peaks with trypsin inhibitor activity. SDS-PAGE and immunoblot analyses revealed DE-52 peaks A and B were enriched in 17 and 15 kDa proteins and these proteins cross-reacted against soybean trypsin inhibitor antibodies. Simulated gastric fluid digestion revealed that the 15-17 kDa proteins are resistant to pepsin digestion. Roasting the seeds lowered the trypsin inhibitor activity while boiling intact seeds elevated the enzyme activity. However, the trypsin inhibitor activity was completely abolished when the seeds were boiled without their seed coats. Immunohistochemical detection and confocal microscopy demonstrated that trypsin inhibitors were localized in the cell cytosol.

14.
J Pest Sci (2004) ; 94(4): 1197-1208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720786

RESUMO

Entomopathogenic nematodes (EPN) have great potential as biological control agents against root-feeding insects. They have a rapid and long-lasting mode of action, minimal adverse effects on the environment and can be readily mass-produced. However, they have a relatively short shelf-life and are susceptible to desiccation and UV light. These shortcomings may be overcome by encapsulating EPN in Ca2+-alginate hydrogels, which have been shown to provide a humid and UV protective shelter. Yet, current Ca2+-alginate formulations do not keep EPN vigorous and infectious for a prolonged period of time and do not allow for their controlled release upon application. Here, we introduce solid Ca2+-alginate beads which we supplemented with glycerol to better retain the EPN during storage and to ensure a steady release when applied in soil. Glycerol-induced metabolic arrest in EPN (Heterorhabditis bacteriophora) resulting in quiescence and total retainment of EPN when added to beads made with 0.5% sodium alginate and 2% CaCl2·2H2O solutions. More than 4,000 EPN could be embedded in a single 4-5-mm diameter bead, and quiescence could be broken by adding water, after which the EPN readily emerged from the beads. In a field trial, the EPN beads were as effective in reducing root damage by the western corn rootworm (WCR, Diabrotica virgifera virgifera) as EPN that were applied in water. Although further improvements are desirable, we conclude that Ca2+-alginate beads can provide an effective and practical way to apply EPN for the control of WCR larvae. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-021-01349-4.

15.
BMC Genomics ; 22(1): 639, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479486

RESUMO

BACKGROUND: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.


Assuntos
Bacillus thuringiensis , Besouros , Praguicidas , Animais , Bacillus thuringiensis/genética , Sobrevivência Celular , Besouros/genética , Endotoxinas/toxicidade , Resistência a Inseticidas , Larva/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Regulação para Cima , Zea mays/genética
16.
Insects ; 12(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564223

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera LeConte, is the most serious pest of maize in the United States. In pursuit of developing a diet free of antibiotics for WCR, we characterized effects of thermal exposure (50-141 °C) and length of exposure on quality of WCRMO-2 diet measured by life history parameters of larvae (weight, molting, and survival) reared on WCRMO-2 diet. Our results indicated that temperatures had non-linear effects on performance of WCRMO-2 diet, and no impacts were observed on the length of time exposure. The optimum temperature of diet processing was 60 °C for a duration less than 30 min. A significant decline in development was observed in larvae reared on WCRMO-2 diet pretreated above 75 °C. Exposing WCRMO-2 diet to high temperatures (110-141 °C) even if constrained for brief duration (0.9-2.3 s) caused 2-fold reduction in larval weight and significant delays in larval molting but no difference in survival for 10 days compared with the control diet prepared at 65 °C for 10 min. These findings provide insights into the effects of thermal exposure in insect diet processing.

17.
Sci Rep ; 11(1): 17944, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504232

RESUMO

The northern corn rootworm, Diabrotica barberi Smith & Lawrence, has a univoltine life cycle that typically produces one generation a year. When rearing the northern corn rootworm in the laboratory, in order to break diapause, it is necessary to expose eggs to a five month cold period before raising the temperature. By selective breeding of the small fraction of eggs that hatched without cold within 19-32 days post oviposition, we were able to develop a non-diapausing colony of the northern corn rootworm within five generations of selection. Through selection, the percentages of adult emergence from egg hatch without exposure to cold treatment significantly increased from 0.52% ± 0.07 at generation zero to 29.0% ± 2.47 at generation eight. During this process, we developed an improved method for laboratory rearing of both the newly developed non-diapausing strain as well as the diapausing strain. The development of the non-diapausing colony along with the improvements to the rearing system will allow researchers to produce up to six generations of the northern corn rootworm per year, which would facilitate research and advance our knowledge of this pest at an accelerated rate.

18.
J Econ Entomol ; 114(5): 2220-2228, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34453170

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), poses a serious threat to maize (Zea mays L.) growers in the U.S. Corn Belt. Transgenic corn expressing Bacillus thuringiensis (Bt) Berliner is the major management tactic along with crop rotation. Bt crops targeting WCR populations have been widely planted throughout the Corn Belt. Rootworms have developed resistance to nearly all management strategies including Bt corn. Therefore, there is a need for new products that are not cross-resistant with the current Bt proteins. In this study, we evaluated the susceptibility of WCR strains resistant and susceptible to Cry3Bb1 to the biological insecticide Spear-T (GS-omega/kappa-Hexatoxin-Hv1a) alone and combined with Cry3Bb1 protein. The activity of Hv1a alone was similar between Cry3Bb1-resistant and susceptible strains (LC50s = 0.95 mg/cm2 and 1.50 mg/cm2, respectively), suggesting that there is no cross-resistance with Cry3Bb1 protein. Effective concentration (EC50), molt inhibition concentration (MIC50), and inhibition concentration (IC50) values of Hv1a alone were also similar between both strains, based on non-overlapping confidence intervals. Increased mortality (64%) was observed on resistant larvae exposed to Hv1a (0.6 mg/cm2) + Cry3Bb1 protein (170.8 µg/cm2) compared to 0% mortality when exposed to Cry3Bb1 alone and 34% mortality to Hv1a alone (0.3 mg/cm2). The time of larval death was not significantly different between Hv1a alone (3.79 mg/cm2) and Hv1a (0.6 mg/cm2) + Cry3Bb1 (170.8 µg/cm2). New control strategies that are not cross-resistant with current insecticides and Bt proteins are needed to better manage the WCR, and Hv1a together with Cry3Bb1 may fit this role.


Assuntos
Besouros , Animais , Besouros/genética , Endotoxinas , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Zea mays/genética
19.
Insects ; 12(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671118

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.

20.
Mol Ecol ; 30(21): 5438-5453, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33683750

RESUMO

Evolution of resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) threatens the sustainability of the technology. Examination of resistance mechanisms has largely focused on characterization of mutations in proteins serving as Bt toxin binding sites. However, insect microbial communities have the potential to provide host resistance to pesticides in a myriad of ways. Previous findings suggest the killing mechanism of Bt relies on enteric bacteria becoming pathogenic in the disrupted gut environment of the insect following Bt intoxication. Thus, here we hypothesized that resistance to Bt would alter the microbiome composition of the insect. Previous studies have manipulated the microbiome of susceptible insects and monitored their response to Bt. In our study, we characterized the associated bacterial communities of Bt-resistant and -susceptible western corn rootworms, a widespread pest of maize in the United States. We found resistant insects harbor a bacterial community that is less rich and distinct from susceptible insects. After feeding on Bt-expressing maize, susceptible insects exhibited dysbiosis of the associated bacterial community, whereas the community within resistant insects remained relatively unchanged. These results suggest resistance to Bt produces alterations in the microbiome of the western corn rootworm that may contribute to resistance. We further demonstrated that by itself, feeding on Bt toxin-expressing seedlings caused a shift in the microbiota. This work provides a broader picture of the effect stressors have on microbiome composition, and the potential heritable changes induced as a result of intense selection.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/genética , Herbivoria , Insetos , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA