Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Can J Neurol Sci ; : 1-9, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438281

RESUMO

BACKGROUND: Prognosticating outcomes for traumatic brain injury (TBI) patients is challenging due to the required specialized skills and variability among clinicians. Recent attempts to standardize TBI prognosis have leveraged machine learning (ML) methodologies. This study evaluates the necessity and influence of ML-assisted TBI prognostication through healthcare professionals' perspectives via focus group discussions. METHODS: Two virtual focus groups included ten key TBI care stakeholders (one neurosurgeon, two emergency clinicians, one internist, two radiologists, one registered nurse, two researchers in ML and healthcare and one patient representative). They answered six open-ended questions about their perceptions and potential ML use in TBI prognostication. Transcribed focus group discussions were thematically analyzed using qualitative data analysis software. RESULTS: The study captured diverse perceptions and interests in TBI prognostication across clinical specialties. Notably, certain clinicians who currently do not prognosticate expressed an interest in doing so independently provided they had access to ML support. Concerns included ML's accuracy and the need for proficient ML researchers in clinical settings. The consensus suggested using ML as a secondary consultation tool and promoting collaboration with internal or external research resources. Participants believed ML prognostication could enhance disposition planning and standardize care regardless of clinician expertise or injury severity. There was no evidence of perceived bias or interference during the discussions. CONCLUSION: Our findings revealed an overall positive attitude toward ML-based prognostication. Despite raising multiple concerns, the focus group discussions were particularly valuable in underscoring the potential of ML in democratizing and standardizing TBI prognosis practices.

2.
J Neurotrauma ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38279813

RESUMO

Computed tomography (CT) is an important imaging modality for guiding prognostication in patients with traumatic brain injury (TBI). However, because of the specialized expertise necessary, timely and dependable TBI prognostication based on CT imaging remains challenging. This study aimed to enhance the efficiency and reliability of TBI prognostication by employing machine learning (ML) techniques on CT images. A retrospective analysis was conducted on the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) data set (n = 1016). An ML-driven binary classifier was developed to predict favorable or unfavorable outcomes at 6 months post-injury. The prognostic performance was assessed using the area under the curve (AUC) over fivefold cross-validation and compared with conventional models that depend on clinical variables and CT scoring systems. An external validation was performed using the Comparative Indian Neurotrauma Effectiveness Research in Traumatic Brain Injury (CINTER-TBI) data set (n = 348). The developed model achieved superior performance without the necessity for manual CT assessments (AUC = 0.846 [95% CI: 0.843-0.849]) compared with the model based on the clinical and laboratory variables (AUC = 0.817 [95% CI: 0.814-0.820]) and established CT scoring systems requiring manual interpretations (AUC = 0.829 [95% CI: 0.826-0.832] for Marshall and 0.838 [95% CI: 0.835-0.841] for International Mission for Prognosis and Analysis of Clinical Trials in TBI [IMPACT]). The external validation demonstrated the prognostic capacity of the developed model to be significantly better (AUC = 0.859 [95% CI: 0.857-0.862]) than the model using clinical variables (AUC = 0.809 [95% CI: 0.798-0.820]). This study established an ML-based model that provides efficient and reliable TBI prognosis based on CT scans, with potential implications for earlier intervention and improved patient outcomes.

3.
Int J Comput Assist Radiol Surg ; 18(11): 2001-2012, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37247113

RESUMO

BACKGROUND: Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload. METHODS: Based on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). RESULTS: Anomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. CONCLUSION: This study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.

4.
Tomography ; 9(3): 901-908, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37218934

RESUMO

Background: Training machine learning (ML) models in medical imaging requires large amounts of labeled data. To minimize labeling workload, it is common to divide training data among multiple readers for separate annotation without consensus and then combine the labeled data for training a ML model. This can lead to a biased training dataset and poor ML algorithm prediction performance. The purpose of this study is to determine if ML algorithms can overcome biases caused by multiple readers' labeling without consensus. Methods: This study used a publicly available chest X-ray dataset of pediatric pneumonia. As an analogy to a practical dataset without labeling consensus among multiple readers, random and systematic errors were artificially added to the dataset to generate biased data for a binary-class classification task. The Resnet18-based convolutional neural network (CNN) was used as a baseline model. A Resnet18 model with a regularization term added as a loss function was utilized to examine for improvement in the baseline model. Results: The effects of false positive labels, false negative labels, and random errors (5-25%) resulted in a loss of AUC (0-14%) when training a binary CNN classifier. The model with a regularized loss function improved the AUC (75-84%) over that of the baseline model (65-79%). Conclusion: This study indicated that it is possible for ML algorithms to overcome individual readers' biases when consensus is not available. It is recommended to use regularized loss functions when allocating annotation tasks to multiple readers as they are easy to implement and effective in mitigating biased labels.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Criança , Algoritmos , Viés
5.
Medicine (Baltimore) ; 101(47): e31848, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36451512

RESUMO

BACKGROUND: The purpose of this study was to conduct a systematic review for understanding the availability and limitations of artificial intelligence (AI) approaches that could automatically identify and quantify computed tomography (CT) findings in traumatic brain injury (TBI). METHODS: Systematic review, in accordance with PRISMA 2020 and SPIRIT-AI extension guidelines, with a search of 4 databases (Medline, Embase, IEEE Xplore, and Web of Science) was performed to find AI studies that automated the clinical tasks for identifying and quantifying CT findings of TBI-related abnormalities. RESULTS: A total of 531 unique publications were reviewed, which resulted in 66 articles that met our inclusion criteria. The following components for identification and quantification regarding TBI were covered and automated by existing AI studies: identification of TBI-related abnormalities; classification of intracranial hemorrhage types; slice-, pixel-, and voxel-level localization of hemorrhage; measurement of midline shift; and measurement of hematoma volume. Automated identification of obliterated basal cisterns was not investigated in the existing AI studies. Most of the AI algorithms were based on deep neural networks that were trained on 2- or 3-dimensional CT imaging datasets. CONCLUSION: We identified several important TBI-related CT findings that can be automatically identified and quantified with AI. A combination of these techniques may provide useful tools to enhance reproducibility of TBI identification and quantification by supporting radiologists and clinicians in their TBI assessments and reducing subjective human factors.


Assuntos
Inteligência Artificial , Lesões Encefálicas Traumáticas , Humanos , Reprodutibilidade dos Testes , Cintilografia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA