Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38573589

RESUMO

Myocardial infarction (MI) and pulmonary artery hypertension (PAH) are two prevalent cardiovascular diseases. In both conditions, oxidative stress is associated with a worse prognosis. Pterostilbene (PTE), an antioxidant compound, has been studied as a possible therapy for cardiovascular diseases. This study aims to evaluate the effect of PTE on oxidative stress in the hearts of animals with myocardial infarction and in the lungs of animals with PAH. Male Wistar rats were used in both models. In the MI model, the experimental groups were sham, MI, and MI+PTE. In PAH model, the experimental groups were control, PAH, and PAH+PTE. Animals were exposed to MI through surgical ligation of the left coronary artery, or to PAH, by administration of monocrotaline (60 mg/kg). Seven days after undergoing cardiac injury, the MI+PTE animals were treated with PTE (100 mg/kg day) for 8 days. After this, the heart was collected for molecular analysis. The PAH+PTE animals were treated with PTE (100 mg/kg day) for 14 days, beginning 7 days after PAH induction. After this, the lungs were collected for biochemical evaluation. We found that PTE administration attenuated the decrease in ejection fraction and improved LV end-systolic volume in infarcted animals. In the PAH model, PTE improved pulmonary artery flow and decreased ROS levels in the lung. PTE administration promoted protective effects in terms of oxidative stress in two experimental models of cardiac diseases: MI and PAH. PTE also improved cardiac function in infarcted rats and pulmonary artery flow in animals with PAH.

2.
Appl Physiol Nutr Metab ; 45(9): 987-995, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32191845

RESUMO

This study explored the effect of pterostilbene (PTS) complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on right heart function, glutathione and glutaredoxin systems, and the expression of redox-sensitive proteins involved with regulation calcium levels in the experimental model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). After 7 days of PAH induction, rats received daily doses of the PTS:HPßCD complex (corresponding to 25, 50, or 100 mg·kg-1 of PTS) or vehicle (control group, CTR0) (an aqueous solution containing HPßCD; CTR0 and MCT0 (MCT group that did not receive PTS treatment)) via oral administration for 2 weeks. The results showed that the PTS:HPßCD complex increased the content of reduced glutathione and the activity of glutathione-S-transferase and glutaredoxin in the right ventricle (RV) of MCT-treated rats in a dose-dependent manner. Additionally, at higher doses, it also prevented the reduction of stroke volume and cardiac output, prevented myocardial performance index (MPI) increase, reduced lipoperoxidation, reduced total phospholamban, and increased the expression of sarcoplasmic reticulum calcium ATPase in the RV of MCT-treated rats. These results demonstrate that the PTS:HPßCD complex has a dose-dependent antioxidant mechanism that results in improved cardiac function in experimental right heart failure. Our results open a field of possibilities to PTS administration as new therapeutic approach to conventional therapy for right ventricular dysfunction. Novelty Pterostilbene complexed with hydroxypropyl-ß-cyclodextrin could be a new therapeutic approach. Pterostilbene complexed with hydroxypropyl-ß-cyclodextrin reestablishes redox homeostasis through glutathione metabolism modulation, leading to an improved MPI in pulmonary arterial hypertension-provoked right heart failure.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Estresse Oxidativo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estilbenos/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Animais , Antioxidantes/farmacologia , Cálcio/metabolismo , Ecocardiografia , Glutationa/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Peroxidação de Lipídeos , Masculino , Monocrotalina , Ratos , Ratos Wistar , Volume Sistólico
3.
Nutrition ; 70: 110579, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743815

RESUMO

OBJECTIVES: Pulmonary arterial hypertension (PAH) is a condition characterized by an increased resistance of pulmonary vasculature, culminating in an increase in pulmonary pressure. This process involves disturbances in lung redox homeostasis, causing progressive right heart failure. In this context, the use of natural antioxidants, such as those found in blueberries, may represent a therapeutic approach. The aim of this study was to evaluate the effect of blueberry extract (BB) on functional parameters and oxidative stress levels in rat lungs with induced PAH. METHODS: Forty-eight male Wistar rats (weighing 200 ± 20 g) were randomized into five groups: control, monocrotaline, monocrotaline + BB 50, monocrotaline + BB 100, and monocrotaline + BB 200. PAH was induced by the administration of monocrotaline (60 mg/kg, intraperitoneal). Rats were treated with BB at doses of 50, 100, and 200 mg/kg via gavage for 5 wk (2 wk before monocrotaline and 3 wk after monocrotaline injection). At day 35, rats were submitted to echocardiography and catheterization. They were then sacrificed and lungs were harvested for biochemical analyses. RESULTS: BB increased the E/A ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion, as wells as decreased the mean pulmonary artery pressure of animals compared with the PAH group. Moreover, BB decreased total reactive species concentration and lipid oxidation, reduced activity of nicotinamide adenine dinucleotide phosphate oxidase and expression of xanthine oxidase, increased the activity of superoxide dismutase and restored sulfhydryl content in the animal lungs compared with those in the PAH group. Additionally, BB restored expression of the antioxidant transcriptional factor Nrf2 in the lungs of the animal subjects. Finally, BB normalized the endothelin receptor (ETA/ETB) expression ratio in the animal lungs, which were increased in the PAH group. CONCLUSION: Intervention with BB mitigated functional PAH outcomes through improvement of the pulmonary redox state. Our results provide a basis for future research on natural antioxidant interventions as a novel treatment strategy in PAH.


Assuntos
Antioxidantes/farmacologia , Pressão Arterial/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Extratos Vegetais/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Pulmão/irrigação sanguínea , Masculino , Monocrotalina/farmacologia , Oxirredução/efeitos dos fármacos , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Eur J Pharmacol ; 854: 159-166, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30991047

RESUMO

After acute myocardial infarction (AMI), reactive oxygen species and oxidative stress have important roles in the progression to heart failure. As a therapeutic alternative, thyroid hormones (TH) revealed cardioprotective effects after AMI, including decreasing oxidative stress. Carvedilol beta-blocker, already used in the clinical treatment of AMI, also mitigate cardiac pathological remodelling. This study assessed the effects of post-AMI carvedilol and TH co-administration on oxidative stress and cardiac function as well as whether those effects were synergistic. Male Wistar rats were divided into five groups: sham-operated (SHAM), infarcted (MI), infarcted + TH (MI + TH), infarcted + carvedilol (MI + C) and infarcted + C + TH (MI + C + TH). Two days post-surgery, the SHAM and MI groups received saline, and treated groups received their respective treatments by gavage for 12 days. The animals were submitted to echocardiographic evaluation, ventricular catheterization and euthanized for heart collection to perform oxidative stress analysis. Treated groups improved for ejection fraction compared to the MI group. Carvedilol decreased the positive chronotropic TH effects in the MI + C + TH group. The MI and MI + C groups had increased reactive oxygen species and reduced sulfhydryl levels. Carvedilol and TH co-administration showed synergic effects in the MI + C + TH group, reducing reactive oxygen species levels and improving GSH/GSSG ratio. Moreover, co-treatment attenuated NADPH oxidase activity in the MI group. Therefore, this study showed for the first time that carvedilol and TH co-administration may improve redox balance and cardiac function after AMI. Such co-administration could represent a therapeutic strategy capable of preventing cardiac dysfunction and redox unbalance after AMI.


Assuntos
Carvedilol/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Infarto do Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Animais , Antioxidantes/metabolismo , Sinergismo Farmacológico , Eletrocardiografia/efeitos dos fármacos , Dissulfeto de Glutationa/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tireotropina/sangue
5.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
6.
Biomed Pharmacother ; 104: 165-171, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29772437

RESUMO

The aim of this study was to analyse the effect of sulforaphane (SFN) in cultures of adult cardiomyocytes, evaluating oxidative stress at different times. Cells were isolated, cultured, and divided into 4 groups: Control, SFN (5µM), H2O2 (5µM), and SFN+H2O2 (5µM both), and subdivided into groups undergoing 1 or 24 h of SFN incubation. After 1 h of incubation, reactive oxygen species production was 40% lower in the SFN group than the Control, and lipid peroxidation was 63% higher in the H2O2 group than the Control, and it was reduced in both of the SFN groups. The SOD activity was 59% higher in groups incubated for 24 h than in those incubated for 1 h. Protein expression of SOD-1 and SOD-2 was higher in the 24-h groups compared to the 1-h groups (55% and 24%, respectively). The Nrf2 protein expression in the 1-h groups was 17% higher than in the 24-h groups, and the SFN + H2O2 group had 40% more Nrf2 than the Control in the 1-h groups. Unlike Nrf2, the PGC-1α expression was 69% higher in the 24-h groups in relation to the 1-h groups. Regarding the 24-h groups, the SFN and SFN+H2O2 groups were higher than the Control (32% and 33%, respectively), and the SFN+H2O2 group was increased (21%) compared to H2O2. SFN had a protective action against oxidative damage, but had no effect on the antioxidant enzymes analyzed. The different responses in the expression of Nrf2 and PGC-1α in relation to the incubation times, draws attention to the importance of establishing a timeline of the action of SFN, since there appears to be a temporal difference in its mechanism in adult cardiomyocytes.


Assuntos
Isotiocianatos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Linhagem Celular , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA