Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 235: 105810, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33823483

RESUMO

There is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling. Here we exposed Pacific herring (Clupea pallasi) embryos to oiled gravel effluent yielding ΣPAC concentrations as low as ~ 1 µg/L (64 ng/g in tissues). Upon hatching in clean seawater, and following the depuration of tissue PACs (as evidenced by basal levels of cyp1a gene expression), the ventricles of larval herring hearts showed a concentration-dependent reduction in posterior growth (ballooning). This was followed weeks later in feeding larvae by abnormal trabeculation, or formation of the finger-like projections of interior spongy myocardium, and months later with hypertrophy (overgrowth) of the spongy myocardium in early juveniles. Given that heart muscle cell differentiation and migration are driven by Ca2+-dependent intracellular signaling, the observed disruption of ventricular morphogenesis was likely a secondary (downstream) consequence of reduced calcium cycling and contractility in embryonic cardiomyocytes. We propose defective trabeculation as a promising phenotypic anchor for novel morphometric indicators of latent cardiac injury in oil-exposed herring, including an abnormal persistence of cardiac jelly in the ventricle wall and cardiomyocyte hyperproliferation. At a corresponding molecular level, quantitative expression assays in the present study also support biomarker roles for genes known to be involved in muscle contractility (atp2a2, myl7, myh7), cardiomyocyte precursor fate (nkx2.5) and ventricular trabeculation (nrg2, and hbegfa). Overall, our findings reinforce both proximal and indirect roles for dysregulated intracellular calcium cycling in the canonical fish early life stage crude oil toxicity syndrome. More work on Ca2+-mediated cellular dynamics and transcription in developing cardiomyocytes is needed. Nevertheless, the highly specific actions of ΣPAC mixtures on the heart at low, parts-per-billion tissue concentrations directly contravene classical assumptions of baseline (i.e., non-specific) crude oil toxicity.


Assuntos
Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cardiotoxicidade/patologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Peixes/embriologia , Peixes/fisiologia , Coração , Larva , Miocárdio/química , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar
2.
Ecotoxicol Environ Saf ; 163: 96-103, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30041130

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in consumer products and are now found in the aquatic environment. The presence of PBDEs puts the health and survival of aquatic species at risk due to the various toxic effects associated with exposure to these compounds. The effects of a binary dietary mixture of PBDEs on innate immunity and disease susceptibility of juvenile Chinook salmon (Oncorhynchus tshawytscha) were examined in the present study. Salmon were fed roughly 1:1 mixtures of two environmentally predominant PBDE congeners, BDE-47 and BDE-99. The six resulting whole body total PBDE concentrations ranged from less than the limit of quantification to 184 ng/g, wet weight (ww). The innate immune system was assessed by using two in vitro macrophage function assays. Specifically, assays that examined the ability of head kidney macrophages to: (1) engulf sheep red blood cells (SRBCs); and (2) produce a respiratory burst, as determined by the production of a reactive oxygen species, superoxide anion. Macrophages from salmon fed the BDE-47/99 mixture diets engulfed more SRBCs and produced greater superoxide anion than salmon fed the control diet. An increase in macrophage function was observed in fish with whole body total PBDE concentrations ranging from 2.81 ng/g, ww to 184 ng/g, ww. The mechanism for this increase in macrophage function due to PBDE exposure is currently unknown, but may be due to the ability of PBDEs to act as an endocrine receptor agonist and/or antagonist. Salmon exposed to the BDE-47/99 mixture diets were also challenged with the pathogenic bacteria, Vibrio (Listonella) anguillarum to determine disease susceptibility. Kaplan-Meier survival curves of fish exposed to the BDE-47/99 mixture and control diets were significantly different. The Cox proportional hazard risk ratios of disease-induced mortality in juvenile Chinook salmon with whole body concentrations of total PBDEs of 10.9, 36.8, and 184 ng/g, ww were significantly greater than the fish fed the control diet by 1.56, 1.83 and 1.50 times, respectively. Not all concentrations of the binary mixture diets had significant hazard ratios relative to the control diet, due to a non-monotonic concentration response curve. The mixture of PBDE congeners resulted in interactive effects that were generally non-additive and dependent upon the congener concentrations and metric examined. Consequently, predicting the interactive effects in juvenile Chinook salmon exposed to mixtures of PBDE congeners on innate immunity and disease susceptibility cannot be readily determined from the adverse effects of individual PBDE congeners.


Assuntos
Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Salmão/imunologia , Animais , Exposição Dietética , Suscetibilidade a Doenças , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/efeitos dos fármacos , Listonella , Macrófagos/imunologia , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Salmão/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA